Water Solutions 3|2017: The References

14 - 17 Assessment of current and future groundwater potential in Akarçay River Basin, Turkey

[1] DSİ, 2013. Hydrogeological Investigation Report for Akarçay Basin by Fugro Sial Geosciences Consulting and Engineering.

[2] SYGM, 2013. Groundwater Modelling and Scenario Analysis Section of the Drought Management Plan for Akarçay Basin by Fugro Sial Geosciences Consulting and Engineering.

[3] USDA, 1985. National Engineering Handbook, Section 4 – Hydrology (NEH-4), United States Department of Agriculture, Soil Conservation Service, 1985.

[4] USDA, 1986. Urban hydrology for small watersheds. Technical Release 55 (Second ed.), United States Department of Agriculture, Natural Resources Conservation Service, Conservation Engineering Division.

[5] DVWK, 1996. Ermittlung der Verdunstung von Land- und Wasserflächen. Merkblätter zur Wasserwirtschaft des Deutschen Verbandes für Wasserwirtschaft und Kulturbau e.V. (Hrsg.), H. 238, 135 S., Wirtschafts- und Verl.-Ges. Gas und Wasser, Bonn.

[6] Penman, H. L., 1948; Natural evaporation from open water, bare soil and grass. Proc. Roy. Soc. London A (194), pp 120–145.

[7] Junghans, H., 1969. Sonnenscheindauer und Strahlungsempfang geneigter Flächen. Abhandlungen des Meteorologischen Dienstes der Deutschen Demokratischen Republik, Nr. 85, Band XI, 106pp.

[8] Bagrov, N. A., 1953; O srednem mnogoletnem ispraeniiz c paverknosti sushi (on the average long-term evaporation from the land surface), Meteorologia i Gidrologia, 10, 20–25.

[9] Harbaugh, A. W. and McDonald, M. G., 1996a. User’s documentation for MODFLOW-96, an update to the U.S. Geological Survey modular finite-difference ground-water flow model, USGS Open-File Report 96–485.

[10] Harbaugh, A. W. and McDonald, M. G., 1996b. Programmer’s documentation for MODFLOW-96 an update to the U.S. Geological Survey modular finite-difference ground-water flow model, USGS Open-File Report 96–486.

25 - 31 Flood loss prevention and risk reduction in Asia

[1] Kron, W. (2013): Inland floods. In: Severe weather in Eastern Asia, Munich Reinsurance Company, Munich, 408 pp., 88–127.

[2] Munich Re (2017): Topics Geo Natural Catastrophes 2016 – Analyses, Assessments, Positions. Munich Reinsurance Company, Munich, 74 pp.

[3] Kron, W. (2017): Unexpected, destructive, deadly: Flash floods. Water Solutions 2/2017, DIV Deutscher Industrieverlag GmbH,15–17.

[4] Ding, Y. & Liu, J. (1992): Glacier lake outburst flood disasters in China. Annals of Glaciology, 16, 180–184.

[5] WWF (2005): An Overview of Glaciers, Glacier Retreat, and Subsequent Impacts in Nepal, India and China. WWF Nepal Program, 70 pp.

[6] ICOLD (2012): The Dams Newsletter No.12, July 2012, International Commission on Large Dams, Paris, France, 12 pp.

[7] Takeshi, T. (2011): Evolution of Debris-flow Monitoring Methods on Sakurajima. International Journal of Erosion Control Engineering Vol.4, No.1, 2011, 21-31.

[8] Kron, W. (2012): Severe floods in Australia, the USA and Thailand. In: Topics Geo Natural Catastrophes 2011 – Analyses, Assessments, Positions. Munich Reinsurance Company, Munich, 56 pp., 26-31

[9] Xinhua (2008): Flood control plans approved for major rivers. Xinhua News Agency, February 21, 2008. www.china.org.cn/english/government/243401.htm

[10] NASA (2012): 2010 Landslide in Gansu, China. National Aeronautics and Space Administration Precipitation Measurement Missions. pmm.nasa.gov/image-gallery/2010-landslide-gansu-china, accessed June 13, 2017.

34 - 35 Operationalising the urban Water-Energy-Food (WEF) Nexus in Asian cities

[1] OECD (2012). OECD Environmental Outlook to 2050. OECD Publishing, Paris, France, pp. 353.

[2] UNEP (2014). The Business Case for Eco-innovation. United Nations Environment Programme, Nairobi, Kenya, pp. 52.

[3] IEA (2009). World Energy Outlook 2009. International Energy Agency, Paris, France, pp. 698.

[4] WBCSD (2014). Co-optimizing solutions: water and energy for food, feed and fibre. World Business Council for Sustainable Development (WBCSD), Geneva, Switzerland, pp. 237.

[5] UNPD (2011). United Nations Population Division, esa.un.org/unup/ (accessed 29.08.11).

[6] IPCC (2014). Climate Change 2014: Synthesis Report. Intergovernmental Panel on Climate Change (IPCC), pp. 80.

[7] Bhattacharya, A. & B.K. Mitra (2013). Water Availability for Sustainable Energy Policy: Assessing cases in South and South-East Asia. Institute for Global Environmental Strategies (IGES), Kanagawa, pp.88.

[8] Vörösmarty, C.J., P. Green, & R.P Lammers (2000). Global Water Resources: Vulnerability from Climate Change & Population Growth. Science 289, p.284–88.

[9] Hoff, H. (2011). Understanding the Nexus. Background Paper for the Bonn2011 Conference: The Water, Energy and Food Security Nexus. Stockholm Environment Institute, Stockholm, pp. 52.

[10] ADB (2013). Thinking about Water Differently Managing the Water–Food–Energy Nexus. Mandaluyong City, Philippines: Asian Devt. Bank (ADB), pp.47.

[11] GWSP (2014). Call to Action: for Implementing the Water-Energy-Food Nexus. May 20th 2014, Global Water System Project (GWSP), Bonn, Germany, pp.4.

38 - 40 Water for all

[1] In comparison, the DRC is slightly less than one-fourth the size of the United States.

[2] Angola, Burundi, the Central African Republic, the Republic of Congo, Rwanda, South Sudan, Tanzania, Uganda, and Zambia.

[3] With an abundance of gold, tantalum, tungsten, and tin - all minerals used in electronics such as mobile phones or laptops.

[4] According to the World Bank with 900 billion cubic meters in 2013.

[5] Progress Report of the DRC on the Millennium Development Goals, Ministry of Planning of the DRC.

[6] Such as the First, 1996-1997, and the Second Congo War, 1998-2003, involving several African nations.

[7] Transforming our world: the 2030 Agenda for Sustainable Development was passed as a resolution adopted by the General Assembly on 25 September 2015 for the post-2015 development agenda.

[8] "Ensure availability and sustainable management of water and sanitation for all".

[9] "Achieve universal and equitable access to safe and affordable drinking water for all [by 2030]".

[10] Right to access to drinking water; Obligation to pay the bill for drinking water Prohibition to destroy water infrastructure the possibility to complain if there is no water or if the quality is bad.

[11] It is a development policy strategy in order to enable (extremely) poor and disadvantaged men, women and youths, who are excluded from growth processes, to contribute to and benefit from them.

53 - 61 Hydraulic simulation of the filling process of intermittently operated water supply systems

[1] OECD, “Water-related aid data at a glance,” 2013. [Online]. Available: www.oecd.org/dac/stats/water-relatedaiddataataglance.htm. [Accessed 20 10 2015].

[2] P. Klingel, “Die Problematik der intermittierenden Wasserverteilung,” gwf-Wasser|Abwasser, Januar 2013.

[3] K. Vairavamoorthy, E. L. Z. Akinpelu and M. Ali, “DESIGN OF SUSTAINABLE WATER DISTRIBUTION SYSTEMS IN DEVELOPING COUNTRIES,” Water Development Research Unit, Faculty of the Built Environment South Bank University, 2000.

[4] S. Macke, “Epanet.de,” 03 2001. [Online]. Available: epanet.de/dcwaterdesign/index.html. [Accessed 07 09 2015].

[5] P. Ingeduld and Z. Svitak, “Modelling Intermittent Water Supply Systems WIth EPANET,” 8th annual WD symposium August 27-30, Cincinnati, 2006.

[6] M. S. Morley and C. Tricarico, “Pressure Driven Demand Extension for EPANET (EPANETpdd),” University of EXETER Centre for Water Systems, 2014.

[7] M. Marchis, C. M. Fontanazza, G. Freni, G. La Loggia, E. Napoli and V. Notaro, “A model of the filling process of an intermittent distribution network,” Urban Water Journal, vol. 7, no. 6, 2010.

[8] S. Mohapatra, A. Sargaonkar and P. K. Labhasetwar, “Distribution Network Assessment using EPANET for Intermittent and Continuous Water Supply,” Water Resources Management, vol. 28, no. Issue 11, 2014.

[9] E. E. Ameyaw, F. A. Memon and J. Bicik, “Improving equity in intermittent water supply systems,” Journal of Water Supply: Research and Technology—AQUA, vol. 62.8, 2013.

73 - 80 BIBS project exports vocational training in urban water management to India

[1] P. Borpuzari, „WWW.ECONOMICTIMES.COM,“ 27 Feb 2015. [Online]. Available: economictimes.indiatimes.com/jobs/economic-survey-2015-only-2-skilled-work-force-in-the-country/articleshow/46394308.cms. [Access 11th of July 2017].

[2] A. Chaturvedi, „SEWAGE TREATMENT PLANTS MANDATORY FOR APARTMENTS WITH MORE THAN 20 FLATS,“ Bangalore Mirror, 17th February 2016.

[3] „Ordinance on Vocational Training in Environmental Technology Occupations,“ in Federal Law Gazette Part I No 43, Bonn, 2002.

[4] T. Burger, T. Meiren, P. Maurer, Z. Shariff, A. Meinecke, S. Wohlfarth-Bottermann und J. Lau, MODERNIZING VOCATIONAL EDUCATION AND TRAINING IN WATER MANAGEMENT, Stuttgart, Germany: Fraunhofer Verlag, 2015.

81 - 86 Pilot introducing the river basin management approach in Sittaung River Basin/Myanmar

[1] ICWE International conference on water and environment, 1992. The Dublin statement on water and sustainable development. www.un-documents.net/h2o-dub.htm

[2] Hendry, S. 2015. Frameworks for Water Law Reform. Cambridge University Press, Cambridge.

[3] IHP International Hydrological Programme – UNESCO 2009. IWRM Guidelines at the River Basin Level. Available at hydrology.nl/ihppublications/169-iwrm-guidelines-at-river-basin-level.html (accessed 3.07.3017)

[4] Asian Development Bank 2015. Asian Development Bank Institute, Center for River Basin Organizations and Management, and Japan Water Agency, NARBO: a decade of achievements (2004–2014)—promoting integrated water resources management and improving water governance. Available at www.adb.org/sites/default/files/publication/157986/narbo-decade-achievement-2004-2014.pdf

[5] European Commission 2000. Water Framework Directive (WFD) 2000/60/EC: Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000. Available at eur-lex.europa.eu/legal-content/EN/ALL/ (accessed 03.07.2017)

[6] Norman, E.S., Cohen, A. and Bakker, K. (eds.) 2013. Water without borders? Canada, the United States, and Shared Waters. University of Toronto Press, pp. 296.

[7] Mehta, L., Movik, S., Bolding, Al, Derman, B. and Manzungu, E. 2017. Introduction – Flows and practices: The politics of Integrated Water Resources Management (IWRM) in Eastern and Southern Africa. In: Flows and Practices (eds.) Mehta, L., Derman, B. and Manzungu, E. Weaver Press, Harare.

[8] Moss, T. 2003. Solving problems of ‘fit’ at the expense of problems of ‘interplay’? The spatial reorganisation of water management following the EU Water Framework Directive. In: Breit, H., Engels, A., Moss, T., Troja, M. (eds.) How institutions change— perspectives on social learning in global and local environmental contexts. VS Verlag für Sozialwissenschaften, Opladen, pp 85–122.

[9] Moss, T. 2004. The governance of land use in river basins: prospects for overcoming problems of institutional interplay with the EU Water Framework Directive. Land Use Policy 21, 85–94.

[10] Myat Maw, H. 2015. Impact of climate and land use change on soil erosion and stream flow in the Bago river basin, Myanmar, Asian Institute of Technology School of Engineering and Technology, May 2014 Thailand.

[11] van Veen, J. 2015. Modelled Demand and Allocation of Irrigation Water in Myanmar, MSc Thesis, Wageningen University, June 2015.

[12] Irrigation Department. 2014. Outline of the Irrigation Department, October 2014. 61pp. The Republic of the Union of Myanmar Ministry of Agriculture and Irrigation, Irrigation Department.

[13] Saw, K.P. and Arnold, M. 2014. Administering the State in Myanmar. An overview of the General Administration Department Discussion Paper No. 6. Asia Foundation. Retrieved from: asiafoundation.org/resources/pdfs/GADEnglish.pdf

[14] UNDP, 2014. The state of local governance: trends in Bago. UNDP Myanmar. Retrieved from: file:///C:/Users/FMP/AppData/Local/Microsoft/Windows/INetCache/IE/7LKEPRX9/UNDP_MM_LG_Mapping_Bago_web.pdf

[15] Zaw Lwin Tun, Bo Ni, Sein Tun and Nesheim, I. 2016. A proposal for an administrative set up of river basin management in the Sittaung River Basin. NIVA Report SNO 7013-2016. Available at www.niva.no/myanmar/publications (accessed 03.07.2917)

[16] Nesheim, I., et al (2016). Myanmar: Pilot introducing the National Water Framework Directive. Water Solutions, 1/2016, 18–27. Retrieved from: www.niva.no/www/niva/resource.nsf/files/877433188-2016_nivas_myanmar-project_watersolutions_01_2016/$FILE/2016_nivas_myanmar-project_watersolutions_01_2016.pdf

[17] Warner, J., Wester, P. and Bolding, A. 2008. Going with the flow: river basins as the natural units for water management. Water policy, 10 (S2) 121–138; DOI: 10.2166/wp.2008.210

Water Solutions 2|2017: The References

25 - 35 Nitrate pollution in the groundwater resources of the public drinking water supply

[1] Proplanta: www.proplanta.de/Agrar-News/Düngeverordnung

[2] EU-Presse: Vertragsverletzungsverfahren gegen Deutschland wegen Nichtumsetzung der Nitratrichtlinie; ec.europa.eu/deutschland/press/pr_releases/12542_de.htm

[3] Europäische Kommission: „Bericht der Kommission an den Rat und das Europäische Parlament über die Umsetzung der Richtlinie 91/676/EWG des Rates zum Schutz der Gewässer vor Verunreinigung durch Nitrat aus landwirtschaftlichen Quellen auf der Grundlage der Berichter der Mitgliedstaaten für den Zeitraum 2008 – 2011“, SWD 2013, 405 final

[4] Keppner, L., Rohrmoser, W., Wendang, J., Fischer, D.: „Gemeinsamer Bericht der Bundesministerien für Umwelt, Naturschutz und Reaktorsicherheit sowie für Ernährung, Landwirtschaft und Verbraucherschutz - Nitratbericht 2012“; www.bmel.de/SharedDocs/Downloads/Landwirtschaft/Klima-und-Umwelt/Nitratbericht-2012.pdf

[5] Haakh, F.: Grundwasserschutz für die Trinkwasserversorgung – Probleme und Lösungsansätze, LW-Schriftenreihe 2011; Zweckverband Landeswasserversorgung, 2011

[6] Baden-Württemberg: Verordnung des Umweltministeriums über Schutzbestimmungen und die Gewährung von Ausgleichsleistungen in Wasser- und Quellenschutzgebieten (Schutzgebiets- und Ausgleichs-Verordnung - SchALVO) vom 20. Februar 2001 SchALVO; Fundstelle: GBl. 2001, 145, ber. S. 414; Gliederungs-Nr: 7534; www.landesrecht-bw.de

[7] Sachverständigenrat für Umweltfragen: Kurzstellungnahme Novellierung der Düngeverordnung: Nährstoffüberschüsse wirksam begrenzen; Wissenschaftliche Beiräte für Agrarpolitik (WBA) und Düngefragen (WBD), August 2013; www.umweltrat.de/SharedDocs/Pressemitteilungen/DE/AktuellePressemitteilungen/2012_2016/2013_08_23_PM_Novellierung_Duengeverordnung.html

[8] Agentur für Erneuerbare Energien: AGEE-Statistik Biogasanlagen; www.unendlich-viel-energie.de/mediathek/grafiken/entwicklung-von-biogasanlagen-in-deutschland

[9] Deutscher Verein des Gas- und Wasserfachs: „Konsequenzen nachlassenden Nitratabbauvermögens in Grundwasserleitern“ DVGW F&E-Projekt W 1/06/08; DVGW, Bonn

[10] DVGW, BDEW, VKU: „Nitratüberschuss gefährdet Trinkwasserbrunnen – Neue Grundwasserdatenbank erfasst bundesweit Nitratgehalt der Trinkwasserressourcen“, gemeinsame Presseinformation zum Tag des Wassers am 22. März 2017

[11] Bundesministeriums der Justiz und für Verbraucherschutz in Zusammenarbeit mit der juris GmbH: Düngeverordnung; Verordnung über die Anwendung von Düngemitteln, Bodenhilfsstoffen, Kultursubstraten und Pflanzenhilfsmitteln nach den Grundsätzen der guten fachlichen Praxis beim Düngen (Düngeverordnung - DüV); Ausfertigungsdatum: 10.01.2006; www.gesetze-im-internet.de/bundesrecht/d_v/gesamt.pdf

[12] Deutscher Verein des Gas- und Wasserfachs: „Vergleichende Untersuchung von Hoftorbilanzen und Nmin-Werten zur Verbesserung der Nitrat-Emissionskontrollen in Wasserschutzgebieten“ DVGW F&E-Projekt 2003-08; DVGW, Bonn

[13] Deutscher Verein des Gas- und Wasserfachs: DVGW-Forschungsvorhaben „Konsequenzen nachlassenden Nitratabbauvermögens in Grundwasserleitern “; DVGW, 2013

DVGW: DVGW-Stellungnahme zur Novellierung der Düngeverordnung; www.dvgw.de/fileadmin/dvgw/wasser/ressourcen/stellungnahme_duev2014.pdf

Verband Deutscher Landwirtschaftlicher Untersuchungs- und Forschungsanstalten vdlufa: Standpunkt; Nährstoffbilanzierung im landwirtschaftlichen Betrieb; Speyer, den 21. Juni 2007; VDLUFA, Selbstverlag; www.vdlufa.de/joomla/Dokumente/Standpunkte/10-Naehrstoffbilanzierung.pdf

52 - 57 Minimum night flow method for leakage estimation in developing country water networks

[1] Fantozzi, M. 2014. Advanced Pressure Management in Water Distribution Systems. Course notes 19-21, March, 2014 Munich.

[2] Farley, M., Wyeth, G. Ghazali, Z. B. Istandar, A. and Singh, S. 2008. The Manager’s Non-Revenue Water Handbook A guide to Understanding Water Losses. Ranhill Utilities Berhad and USAID Publication 1-110.

[3] Morrison, J., Tooms, S. and Rogers, D. 2007. District Metered Areas Guidance Notes IWA Publishing 1-96.

[4] Morrison, J. 2004. Managing leakage by District Metered Areas: a practical approach IWA Water 21. 44-46.

[5] Fantozzi, M. and Lambert A. 2012. Residential Night Consumption-Assessment, Choice of Scaling Units and Calculation of Variability. Water Loss 2012.

[6] García, V. J., Cabrera, E., and Cabrera, E. Jr. 2006 The Minimum Night Flow Method Revisited, In Proceedings of the 8th Annual Water Distribution Systems Analysis Symposium. Cincinnati, USA.

[7] McKenzie, R. S. 1999. Development of a Standardized Approach to Evaluate Burst and Background Losses in Potable Water Distribution Systems. SANFLOW User Guide, South African Water Research Commission, Report TT 109/99, ISBN 1-86845-490-8.

[8] Amoatey, K. P., Minke, R. And Steinmetz, H. 2013. "Leakage Estimation in Water Networks based on Two Categories of Night-Time Users, (online) Water Science and Technology: Water Supply Journal doi:10.2166/ws.2013.201.

[9] Loureiro, D., Alegre, Coelho, S. T., Borba, R. 2012. A New Approach to Estimating Household Night Consumption at DMA Level. Water Loss 2012, Manila, Philippines 1-5.

[10] Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH. 2011. Guidelines for Water Loss Reduction: A Focus on Pressure Management. GIZ Publication, 1-232.

[11] Farley, M. 2001. Leakage Management and Control: A Best Practice Training Manual. WHO Publication, 1-163.

[12] Tabesh, M., Asadiyani Yekta, AH. and Burrows, R. 2009. An Integrated Model to Evaluate Losses in Water Distribution Networks. Journal of Water Resources Management, 23: 477-492.

[13] Fanner, P., Thornton, J. 2005. The Importance of Real Loss Component Analysis for Determining the Correct Intervention Strategy. Paper to the IWA Conference ‘Leakage 2005’ Halifax, Canada.

[14] Mimi, Z., Abuhalaweh, O., Wakileh, V. 2004. Evaluation of Water Losses in Distribution Networks: Ramallah as a Case Study. Water Science and Technology: Water Supply (4)183–189.

[15] McKenzie, R. and Seago, C. 2005. Assessment of Real Losses in Potable Water Distribution Systems: Some Recent Developments. Water Science and Technology: Water Supply 5:1:33–40 IWA Publishing.

[16] Thornton, J., Sturm, R. and Kunkel, G. 2008. Water Loss Control. 2nd Edition McGraw-Hill, ISBN 978-0-07-149918-7.

[17] Hunaidi, O. and Brothers, K. 2007. Night Flow Analysis of Pilot DMAs in Ottawa, Conference Proceedings Water Loss Specialist, IWA 32-46.

[18] Web4Water. 1998. Determining Nightline Leakage and Usage. Accessed 05-12-2011 www.web4water.com/library/view_article.asp.

[19] Cheung, P. B., Girol, V. G., Abe, N. and Propato, M. 2010. Night Flow Analysis and Modeling for Leakage Estimation in a Water Distribution System, Integrating Water Systems, 509-513Taylor & Francis Group, London.

[20] Aqua Vitens Rand Limited (AVRL). 2008. Network Design Report. Report 1-44.

[21] Ghana Statistical Service, 2012. 2010 Population and Housing Census Final Report 1-15.

[22] Adombire A. M. 2007. Water supply for the Consumer: A Concise Practical Guide. CSIR-INSTI Science Press.

[23] Mfantsiman Municipal Council. 2012. Sanitation Records.

[24] Kölbl, J. and Gschleiner, R. (2009). Austrian's New Guideline for Water Loss. Water 21:55-56.

[25] DVGW – W 392. 2003. Rohrnetzinspektion und Wasserverluste - Maßnahmen. Verfahren und Bewertungen. Arbeitsblatt (05.2003. in Überarbeitung 2012/2013)

[26] Mutikanga, H. E. 2012. Water Loss Management Tools and Methods for Developing Countries. PhD Thesis, UNESCO-IHE, Delft Netherlands.

[27] Ghana Water Company Limited (GUWL). 2013. Water Production and Sales Annual Report.

65 - 69 Resource Recovery Based Sanitation: Integrating collection and transport with treatment and re-use

Blokker, E. J. M., E. J. Pieterse-Quirijns, J. H. G. Vreeburg and J. C. van Dijk (2011). "Simulating Nonresidential Water Demand with a Stochastic End-Use Model." Journal of Water Resources Planning and Management 137(6): 511-520

Cordell, D, Drangert, J, White, S. (2009). The sory of Phosphorus: Global food security and food for thought. Global environment change 19, 292-305.

Littlewood, K., Butler, D. (2003) Movement mechanisms of gross solids in intermittent flow. Water Science & Technology, 47, 45-50.

Mara, D., Broome, J. (2008) Sewerage: a return to basics to benefit the poor. Proceedings of the ICE-Water Management, 161, 231-237

McCarty P. L., Bae J., Kim J. (2011). Domestic wastewater treatment as a net energy producer- can this be achieved? Environmental Science and Technology. Volume 45. Pages: 7100-7106.

Melo, J.C. (2005) The experience of condominial water and sewerage systems in Brazil: Case studies from Brasilia, Salvador and Parauapebas. Lima: Water and Sanitation Program Latin America.

Metcalf & Eddy, Inc., Tchobanoglous, Burton, F. H. Stensel, D., (2002). Wastewater Engineering: Treatment and Reuse. McGraw-Hill Education, 2002. ISBN: 0070418780, 9780070418783.

Schot, J. &. Geels (2008). Strategic niche management and sustainable innovation journeys: theory, findings, research agenda, and policy. Technology Analysis & Strategic Management, 20 (5), 537–554

Tervahautu, T, Hoang, T, Hérnandez Leal, L. Zeeman, G., Buisman, C. Prospects of source-separation-based sanitation concepts: A model-based study. Water 5 (3), 1006-1035

VEWIN (2015), drinking water fact sheet, www.vewin.nl/SiteCollectionDocuments/Publicaties/Kerngegevens2015-ENG-WEB-los.pdf

Vreeburg, J. H. G., E. J. M. Blokker, P. Horst and J. C. van Dijk (2009). "Velocity based self cleaning residential drinking water distribution systems." Water Science and Technology 9(6): 635-641.

Water Solutions 1|2017: The References

18 - 21 Supporting stakeholder participation in adaptive river basin management

[1] Kochskämper, E, Challies, E, Newig, J, Jager, NW (2016). Participation for effective environ-mental governance? Evidence from Water Framework Directive implementation in Germany, Spain and the United Kingdom. Journal of Environmental Management, 181, 737–748.

[2] European Commission (2003). Public Participation in relation to the Water Framework Di-rective. Guidance document no. 8.

[3] Gain, AK, Rouillard, JJ, Benson, D (2013). Can integrated water resources management in-crease adaptive capacity to climate change adaptation? A critical review. Journal of Water Resource and Protection, 5(04), 11–20.

[4] Huntjens, P, Lebel, L, Pahl-Wostl, C, Camkin, J, Schulze, R, Kranz, N (2012). Institutional design propositions for the governance of adaptation to climate change in the water sector. Global Environmental Change, 22(1), 67–81.

[5] EEA (2014). National adaptation policy processes in European countries. European Environment Agency, Denmark.

[6] Stein, U, Davis, M, Tröltzsch, J, Sánchez, A, Verkerk, H, Libbrecht, S, Broekman, A, Magjar, M, Giannakis, E, Jebari, S, Tarpey, J, Lukat, E, Bruggeman, A, Zoumides, C, Suhadolnik, P, Vidaurre, R, Rouillard, J (2016). Handbook for drafting participatory adaptation plans. Deliverable D4.4, BeWater, FP7 project no. 612385-SIS.2013.1.2-1 European Commission.

36 - 38 Process water from the recycling of waste concrete by pulsed power processing

[1] J.M. Crow (2008): “The concrete conundrum”, Chemistry World 03/2008, 62–66.

[2] A. Schnell, A. Müller (2010): “Entwicklung von Technologien zur Herstellung von Leichtgranulaten aus heterogenen Bau- und Abbruchabfällen”, Teipel, U. (Hrsg.): Rohstoffeffizienz und Rohstoffinnovationen, Fraunhofer Verlag, Stuttgart.

[3] B. W. Sjomkin, A. F. Ussow, W. I. Kurez (1995): “Grundlagen der elektrischen Impulszerstörung von Materialien“, Russische Akademie der Wissenschaften Forschungszentrum Kola, Polytechnische Universität Tomsk, Red.: N. P. Tussow, S. 249 ff.

[4] E. Marx (1923): “Verfahren zur Schlagprüfung von Isolatoren und anderen elektrischen Vorrichtungen”, German Patent 455933.

[5] E. Marx (1924): “Versuche über die Prüfung von Isolatoren mit Spannungsstößen”, Elektrotech. Z. (25), 1924, 652–654.

[6] V. Thome, S. Rasch, Ch. Leiblein (2014): “Konstruktion einer elektrodynamischen Aufbereitungsanlage für Altbeton zur Rückgewinnung von Rohstoffen für die Zementindustrie”, Abschlussbericht, Förderkennzeichen 033R076C, BMBF Programm KMU-innovativ.

42 - 43 Microplastics in agricultural soils: A reason to worry?

[1] Nizzetto, L., Futter, M. and Langaas, S. (2016): “Are Agricultural Soils Dumps for Microplastics of Urban Origin?“ in Environ. Sci. Technol. DOI: 10.1021/acs.est.6b04140.

[2] Nizzetto, L. et al (2016): “A theoretical assessment of microplastic transport in river catchments and their retention by soils and river sediments” in Environ. Sci.: Processes Impacts, 2016, 18, 1050-1059. DOI: 10.1039/C6EM00206D.

[3] Besseling, E. et al. (2016): “Fate of nano- and microplastic in freshwater systems: A modeling study” in Environmental Pollution, 2016. DOI: 10.1016/j.envpol.2016.10.001

[4] Nizzetto, L., Langaas, S. and Futter, M. (2016): “Pollution: Do microplastics spill on to farm soils?” in Nature 537, 488. DOI:10.1038/537488b

54 - 60 Numerical simulation of flow structure in the aeration tank ...

[1] Dohmann, M.; Schröder, M.: Energie in der Abwasserentsorgung - Rückschau und Ausblick. Korrespondenz Abwasser, Abfall 58 (2011) Nr. 6, S. 536 - 541.

[2] Fricke, K.: Energieeffizienz kommunaler Kläranlagen. Herausgeber: Umweltbundesamt, Dessau-Roßlau 2009.

[3] DWA-M 229: Systeme zur Belüftung und Durchmischung von Belebungsanlagen – Teil 1: Planung, Ausschreibung und Ausführung. Ausgabe 05/2013. DWA Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall e. V., Hennef.

[4] Hasselbach, R.: Energiekostenmanagement beim Entsorgungsverband Saar (EVS). Symposium of the Hesse/Rhineland-Palatinate/Saarland section of the German Association for Water, Wastewater and Waste „Optimierungspotenziale auf Kläranlagen“ on 10/01/2013 in Emmelshausen.

[5] Müller, E. A.; Kobel, B.; Pinnekamp, J.; Böcker, K.: Handbuch - Energie in Kläranlagen. Department of Environment, Regional Planning and Agriculture of North Rhine-Westphalia 1999.

[6] EVS: Information brochure of the wastewater treatment plant Ottweiler. Disposal association Saar, August 2006.

[7] ANSYS: Fluent Theory Guide, Release 15.0, ANSYS Inc., November 2013.

63 - 66 Water treatment plants with large stainless steel filters: ...

[1] Brugger, M.: Treatment of waters containing humates with ozone bio-filtration, energie | wasser-praxis 04/2004.

67 - 76 Water quality control in various water treatment processes using TOC-SEC

[1] WWAP. UN World Water Development Report 2015: Water for a Sustainable World. 2015 http://unesdoc.unesco.org/images/0023/002318/231823E.pdf, (accessed 5 January 2017).

[2] Brauer, M., Wilmington, D., Town, R.: Pollutants in aquatic systems. biol. 1998, 64(7), p. 2736–8.

[3] Jones, K.C., De Voogt, P.: Persistent organic pollutants (POPs): state of the science. Environ Pollut. 1999, 100(1), p. 209–21.

[4] Kolpin, D.W., Furlong, E.T., Meyer, M.T., Thurman, E.M., Zaugg, S.D., Barber, L.B., et al.: Pharmaceuticals, hormones, and other organic wastewater contaminants in US streams, 1999-2000: A national reconnaissance. Environ Sci Technol. 2002, 36(6), p. 1202–11.

[5] Perelo, L.W.: Review: in situ and bioremediation of organic pollutants in aquatic sediments. J Hazard Mater. 2010, 177(1), p. 81–9.

[6] Schwarzenbach, R.P., Escher, B.I., Fenner, K., Hofstetter, T.B., Johnson, C.A., von Gunten, U., et al.: The Challenge of Micropollutants in Aquatic Systems. Science. 2006, 313(5790), p. 1072–7.

[7] Clesceri, L.S., Greenberg, A.E., Eaton, A.D.: Standard methods: for the examination of water and wastewater [Internet]. 20. ed. Clesceri LS, American Public Health Association, American Water Works Association, Water Pollution Control Federation, editors. Washington: American Public Health Ass. 1998 http://www.mwa.co.th/download/file_upload/SMWW_1000-3000.pdf, (accessed 27 January 2017).

[8] Hall, J., Zaffiro, A.D., Marx, R.B., Kefauver, P.C., Krishnan, E.R., Haught, R.C., et al.: On-line water quality parameters as indicators of distribution system contamination. J Am Water Works Assoc. 2007, 99(1), p. 66–77.

[9] Nelson, D.W., Sommers, L.E., Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., et al.: Total carbon, organic carbon, and organic matter. Methods Soil Anal Part 3-Chem Methods. 1996, p. 961–1010.

[10] Allpike, B.P., Heitz, A., Joll, C.A., Kagi, R.I., Abbt-Braun, G., Frimmel, F.H., et al.: Size exclusion chromatography to characterize DOC removal in drinking water treatment. Environ Sci Technol. 2005, 39(7), p. 2334–42.

[11] Fukano, K., Komiya, K., Sasaki, H., Hashimoto, T.: Evaluation of new supports for high-pressure aqueous gel permeation chromatography: TSK-GEL SW type columns. J Chromatogr A., 1978, 166(1), p. 47–54.

[12] Her, N., Amy, G., Foss, D., Cho, J., Yoon, Y., Kosenka, P.: Optimization of method for detecting and characterizing NOM by HPLC-size exclusion chromatography with UV and on-line DOC detection. Environ Sci Technol., 2002, 36(5), p. 1069–76.

[13] Her, N., Amy, G., Chung, J., Yoon, J., Yoon, Y.: Characterizing dissolved organic matter and evaluating associated nanofiltration membrane fouling. Chemosphere, 2008, 70(3), p. 495–502.

[14] Her, N., Amy, G., Sohn, J., Gunten, U.: UV absorbance ratio index with size exclusion chromatography (URI-SEC) as an NOM property indicator. J Water Supply Res Technol-Aqua., 2008b, 57(1), p. 35–44.

[15] Matilainen, A., Gjessing, E.T., Lahtinen, T., Hed, L., Bhatnagar, A., Sillanpää, M.: An overview of the methods used in the characterisation of natural organic matter (NOM) in relation to drinking water treatment. Chemosphere, 2011, 83(11), p. 1431–42.

[16] Lankes, U., Müller, M.B., Weber, M., Frimmel, F.H.: Reconsidering the quantitative analysis of organic carbon concentrations in size exclusion chromatography. Water Res., 2009, 43(4), p. 915–24.

[17] Lapworth, D.J., Baran, N., Stuart, M.E., Ward, R.S.: Emerging organic contaminants in groundwater: a review of sources, fate and occurrence. Environ Pollut., 2012, 163, p. 287–303.

[18] Reemtsma, T., Weiss, S., Mueller, J., Petrovic, M., González, S., Barcelo, D., et al.: Polar pollutants entry into the water cycle by municipal wastewater: a European perspective. Environ Sci Technol., 2006, 40(17), p. 5451–8.

[19] Meißner, M.: Arzneimittel in der Umwelt: Natur als Medikamentendeponie. Dtsch Arztebl., 2008, 105(24), p. A-1324 / B-1143 / C-1118.

[20] Jones, O.A.H., Voulvoulis, N., Lester, J.N.: Human pharmaceuticals in the aquatic environment a review. Environ Technol., 2001, 22(12), p. 1383–94.

[21] Jones, O.A.H., Voulvoulis, N., Lester, J.N.: Aquatic environmental assessment of the top 25 English prescription pharmaceuticals. Water Res., 2002, 36(20), p. 5013–22.

[22] Jones, O.A., Lester, J.N., Voulvoulis, N.: Pharmaceuticals: a threat to drinking water? Trends Biotechnol., 2005, 23(4), p. 163–7.

[23] Chow, C.W., Fabris, R., Drikas, M.: A rapid fractionation technique to characterise natural organic matter for the optimisation of water treatment processes. J Water Supply Res Technol-AQUA, 2004, 53(2), p. 85–92.

[24] Chow, C.W., Fabris, R., Leeuwen, J. van, Wang, D., Drikas, M.: Assessing natural organic matter treatability using high performance size exclusion chromatography. Environ Sci Technol., 2008, 42(17), p. 6683–9.

[25] Chow, C.W.K., Kuntke, P., Fabris, R., Drikas, M.: Organic characterisation tools for distribution system management. Water Sci Technol Water Supply, 2009, 9(1), p. 1–8.

[26] Fearing, D.A., Banks, J., Wilson, D., Hillis, P.H., Campbell, A.T., Parsons, S.A.: NOM control options: the next generation. Water Sci Technol Water Supply, 2004, 4(4), p. 139–45.

[27] Zhang, L., Liu, S.: Investigation of organic compounds migration from polymeric pipes into drinking water under long retention times. Procedia Eng., 2014, 70, p. 1753–61.

[28] Baghoth, S.A., Dignum, M., Grefte, A., Kroesbergen, J., Amy, G.L.: Characterization of NOM in a drinking water treatment process train with no disinfectant residual. Water Sci Technol Water Supply, 2009, 9(4), p. 379–86.

[29] Bieroza, M., Baker, A., Bridgeman, J.: Relating freshwater organic matter fluorescence to organic carbon removal efficiency in drinking water treatment. Sci Total Environ., 2009, 407(5), p. 1765–74.

[30] Collins, A., Ohandja, D.-G., Hoare, D., Voulvoulis, N.: Implementing the Water Framework Directive: a transition from established monitoring networks in England and Wales. Environ Sci Policy, 2012, 17, p. 49–61.

[31] Farmer, A.: Water Framework Directive [Internet]. Institute for European Environmental Policy. 2002. http://ecologic.eu/sites/files/download/projekte/850-899/890/in-depth/water_framework_directive.pdf, (accessed 5 January 2017).

[32] Surridge, B., Watson, N.: Water Framework Directive. In: Encyclopedia of Lakes and Reservoirs. Springer, 2012, p. 872–6.

[33] Richardson, SD. Water Analysis: Emerging Contaminants and Current Issues. Anal Chem., 2007, 79(12), p. 4295–324.

[34] California Regional Water Quality Control Board Central Valley Region. A Compilation of Water Quality Goals [Internet]. 2008 http://www.waterboards.ca.gov/drinking_water/certlic/drinkingwater/documents/lawbook/RWregulations_20150716.pdf, (accessed 5 January 2017)

[35] Directive WF. Directive 2000/60 [Internet]. EC of the European Parliament and of the Council of. 2000 http://eur-lex.europa.eu/resource.html?uri=cellar:5c835afb-2ec6-4577-bdf8-756d3d694eeb.0004.02/DOC_1&format=PDF, (accessed 5 January 2017).

[36] USEPA. Drinking Water Contaminant Candidate List 3-Draft; Notice,Federal Register, 2008 https://www.epa.gov/dwstandardsregulations, (accessed 5 January 2017)

[37] Delpla, I., Jung, A.-V., Baures, E., Clement, M., Thomas, O.: Impacts of climate change on surface water quality in relation to drinking water production. Environ Int., 2009, 35(8), p. 1225–33.

[38] Fabris, R., Chow, C.W., Drikas, M., Eikebrokk, B.: Comparison of NOM character in selected Australian and Norwegian drinking waters. Water Res., 2008, 42(15), p. 4188–96.

[39] Culea, M., Cozar, O., Ristoiu, D.: Methods validation for the determination of trihalomethanes in drinking water. J Mass Spectrom., 2006, 41(12), p. 1594–7.

[40] Chen, C., Zhang, X., He, W., Lu, W., Han, H.: Comparison of seven kinds of drinking water treatment processes to enhance organic material removal: A pilot test. Sci Total Environ., 2007, 382(1), p. 93–102.

[41] Kang, M.-G., Ku, Y.-H., Cho, Y.-K., Yu, M.-J.: Variation of dissolved organic matter and microbial regrowth potential through drinking water treatment processes. Water Sci Technol Water Supply, 2006, 6(4), p. 57–66.

[42] Gjessing, E.T., Alberts, J.J., Bruchet, A., Egeberg, P.K., Lydersen, E., McGown, L.B., et al.: Multi-method characterisation of natural organic matter isolated from water: characterisation of reverse osmosis-isolates from water of two semi-identical dystrophic lakes basins in Norway. Water Res., 1998, 32(10), p. 3108–24.

[43] Gjessing, E.T., Steiro, C., Becher, G., Christy, A.: Reduced analytical availability of polychlorinated biphenyls (PCB’s) in colored surface water. Chemosphere, 2007, 66(4), p. 644–9.

[44] Park, J.-H.: Spectroscopic characterization of dissolved organic matter and its interactions with metals in surface waters using size exclusion chromatography. Chemosphere, 2009, 77(4), p. 485–94.

[45] Zularisam, A.W., Ismail, A.F., Salim, R.: Behaviours of natural organic matter in membrane filtration for surface water treatment—a review. Desalination, 2006, 194(1), p. 211–31.

[46] Bound, J.P., Voulvoulis, N.: Pharmaceuticals in the aquatic environment––a comparison of risk assessment strategies. Chemosphere, 2004, 56(11), p. 1143–55.

[47] Volk, C, Bell, K., Ibrahim, E., Verges, D., Amy, G., LeChevallier, M.: Impact of enhanced and optimized coagulation on removal of organic matter and its biodegradable fraction in drinking water. Water Res., 2000, 34(12), p. 3247–57.

[48] Ghoochani, M., Rastkari, N., Nabizadeh Nodehi, R., Mahvi, A., Nasseri, S., Nazmara, S.: Study on the TOC concentration in raw water and HAAs in Tehran’s water treatment plant outlet. J Environ Health Sci Eng., 2013, 11(1), p. 28.

[49] State Water Resources Control Board. Regulations Related to Recycled Water. 2015. http://www.waterboards.ca.gov/drinking_water/certlic/drinkingwater/documents/lawbook/RWregulations_20150716.pdf, (accessed 5 January 2017).

[50] Lee, Y., Gerrity, D., Lee, M., Bogeat, A.E., Salhi, E., Gamage, S., et al.: Prediction of micropollutant elimination during ozonation of municipal wastewater effluents: use of kinetic and water specific information. Environ Sci Technol., 2013, 47(11), p. 5872–81.

[51] Cho, J., Amy, G., Pellegrino, J., Yoon, Y.: Characterization of clean and natural organic matter (NOM) fouled NF and UF membranes, and foulants characterization. Desalination, 1998, 118(1), p. 101–8.

Water Solutions 2|2016: The References

10 - 12 From steel to the chip – intelligent systems as a digital intersection

 [1] Michael E. Porter, James E. Heppelmann ‘How smart products change companies’, Harvard Business Manager, Edition: December 2015.

[2] Water information system Austria, an interactive web platform with databases, tables, interactive maps, options to enquire about water quality and other information concerning the relevant bodies of water in Austria as well as links and publications for download, state.gift/wasserinformationssystem-austria_7584399.html , accessed on 26.06.2016.

[3] Web-based learning environment of the SeCom 2.0 project, nordsee.lfi.rwth-aachen.de/secom/wp-content/uploads/2013/04/Poster_TdH_2013.pdf, accessed on 26.06.2016

13 - 17 Water governance and management: the role of ecosystem services

[1] Biggs, R., Schlüter, M., Biggs, D., Bohensky, E. L. et al. 2012. Toward Principles for Enhancing the Resilience of Ecosystem Services. Annual Review of Environment and Resources 37: 421–448.

[2] Holling, C. S. and Meffe, G. K. 1996. Command and control and the pathology of natural resource management. Conservation Biology 10: 328–337.

[3] Gleick, P. 2003. Global Freshwater Resources: Soft-Path Solutions for the 21 Century. Science 302: 1524–1528.

[4] Pahl-Wostl, C. 2015. Water governance in the face of global change – From understanding to transformation. Springer, Cham, Switzerland.

[5] MA [Millennium Ecosystem Assessment], 2005. Introduction and conceptual framework. Ecosystems and human well-being: a framework for assessment. Millennium Ecosystem Assessment, Washington.

[6] Daily, G. C., 1997. Nature’s services—societal dependence on natural ecosystems. Island, Washington.

[7] Fisher, B., Turner, R. K. and Morling, P., 2009. Defining and classifying ecosystem services for decision making. Ecological Economics 68: 643–653.

[8] Schleyer, C., Görg, C., Hauck, J., Winkler, K. J., 2015. Opportunities and challenges for mainstreaming the ecosystem services concept in the multi-level policy-making within the EU. Ecosystem Services 16, 174-181.

[9] Folke C., Hahn T., Olsson P., Norberg J. 2005. Adaptive governance of social-ecological systems. Annual Review of Environment and Resources 30: 441–473.

[10] Cundill, G., Fabricius, C. 2010. Monitoring the governance dimension of natural resource comanagement. Ecology and Society 15(1): 15.

[11] Bennett, E. M., Peterson G. D., Gordon L. J. 2009. Understanding relationships among multiple ecosystem services. Ecology Letters 12: 1–11.

[12] Primmer, E., Jokinen, P., Blicharska, M., Barton, D. N., Bugter, R., Potschin, M. 2015. Governance of Ecosystem Services: A framework for empirical analysis. Ecosystem Services 16: 158–166.

[13] Newig, J., Fritsch, O. 2009. Environmental governance: participatory, multi-level – and effective? Environmental Policy and Governance 19(3): 197–214.

[14] Knieper, C., Kastens, B., Holtz, G. and Pahl-Wostl, C. 2010. Analysing water governance in heterogeneous case studies – Experiences with a database approach. Environmental Science & Policy 13 (7): 592–603.

18 - 23 Glass bead filter media: higher efficiency and reduced O & M costs

[1] Herrmann, & Stiegler, 2008: Einsatz von Glaskugeln als Ersatz für Filterkies in Brunnen. – in: bbr 05/2008: S. 48-53; Bonn (wvgw).

[2] Paul, K. (2010): Bedeutung und praxisgerechte Bestimmung von Bodenkennwerten für den Brunnenbau. Oral presentation at: figawa geofora Fachkongress für Bohrtechnik, Brunnenbau und Geothermie 17. / 18.06.2010, Hof.

[3] Van Beek & Kooper, 1980: The clogging of shallow discharge wells in the Netherlands river region.- Ground Water 18 (6): 578-586.

[4] Van Beek,1995: Brunnenalterung und Brunnenregenerierung in den Niederlanden.- gwf Wasser/Abwasser 136 (3): S. 128-137.

[5] Houben, & Treskatis, 2003: Regenerierung und Sanierung von Brunnen– 280 S., 111 Abb., 32 Tab., Anhang und CD-ROM; München (Oldenbourg) (ISBN: 3-486-26545-8).

[6] Treskatis, Hein, Peiffer, & Hermann, 2009: Brunnenalterung: Sind Glaskugeln eine Alternative zum Filterkies nach DIN 4924?.- in: bbr 04/2009: S. 36-44; Bonn (wvgw).

[7] Treskatis, C., Danhof, M., Dressler, M. and Herrmann, F. (2010): Vergleich ausgewählter Materialcharakteristiken von Glaskugeln und Filterkiesen für den Einsatz in Trinkwasserbrunnen. DVGW energie|wasser-praxis 1/2010: S. 26 –32; Bonn (wvgw).

[8] Treskatis, Tholen & Klaus, 2011: Hydraulische Merkmale von Filterkies und Glaskugelschüttungen im Brunnenbau – Teil 1. – Energie / Wasser – Praxis (ewp) 12/2011: S. 58 – 65, 11 Abb., 6 Tab.; Bonn; ISSN 1436-6134.

[9] Treskatis, Tholen & Klaus, 2012: Hydraulische Merkmale von Filterkies und Glaskugelschüttungen im Brunnenbau – Teil 2. – Energie / Wasser – Praxis (ewp) 01/2012: S. 40 – 43, 3 Abb.; Bonn; ISSN 1436-6134.

[10] Klaus, Treskatis, & Tholen, L, 2013: Development and scaling characteristics of glass bead and gravel packs – Findings for practical well design.- in: bbr 11/2013: Bonn (wvgw).

[11] Klaus, & Walter, 2011: Wirtschaftlichkeit von Glaskugeln im Brunnenbau – in: bbr 08/2011; Bonn (wvgw).

[12] Klaus & Walter, 2012: Neubau von Brunnen mit Glaskugeln-Ergiebigkeiten/Einsparpotenzial – in: Energie / Wasser – Praxis (ewp) 04/2012: S. 30 – 33; Bonn ISSN 1436-6134.

38 - 43 Innovative technologies for the sustainable water supply in a rural karst area of Vietnam

Bakalowicz M. (2005) Karst groundwater: a challenge for new resources. Hydrogeology Journal 13(2005), 148-160.

Chen Z., Goldscheider N. and WOKAM-team (2016) World Karst Aquifer Mapping Project (WOKAM), under progress. URL www.agw.kit.edu/english/wokam.php

Ford D. und Williams P. (2007) Karst hydrogeology and geomorphology. John Wiley & Sons Ltd., West Sussex, England. DOI: 10.1002/9781118684986.ch5

Fritz J., Rösler W., Schmidt S., Stoffel D., Oberle P. and Nestmann F. (2012) Using pumps as turbines combined with pumps for water supply in an efficient way without the need of electrical power. gwf-Wasser/Abwasser International Issue, 153(S1), 110-113.

KaWaTech (2015) Results of the Ruhr-University Bochum within the KaWaTech project. (unpublished).

KIT (2016) BMBF-Verbundprojekt KaWaTech Vietnam (BMBF joint project KaWaTech), Karlsruhe Institute of Technology (KIT), Online, URL www.kawatech.kit.edu (07.06.2016). in German.

Klingel P., Lagrou D., Chung H. T., Kunze M., Oberle P., Nestmann F., Van T. T. and De Bontridder L. (2011) Sustainable technologies for karst water management for the Dong Van Karst Plateau: approach and first investigations. In: Proceedings of the the Second Asia-Pacific Geoparks Network Symposium on Geopark and Geotourism for Regional Sustainable Development (APGNSymp2011), Hanoi, July 16-24, 2011.

Nhan Dan (2016) Dong Van Karst Plateau welcomes first foreign tourists in 2016, In: Nhan Dan, 02.01.2016, Online, URL en.nhandan.org.vn/politics/domestic/item/3918402-dong-van-karst-plateau-welcomes-first-foreign-tourists-in-2016.html (20.01.2016).

Oberle P., Stoffel D., Ikhwan M. and Nestmann F. (2012) Wasserkraftbetriebene Pumpsysteme als Grundlage einer nachhaltigen Wasserversorgung - Erfahrungen zur Implementierung innovativer Technologien in Schwellenländern. In: Wasserbausymposium „Wasser – Energie, Global denken - lokal handeln“, 15.09.2012, Graz, Österreich, Verlag der Techn. Universität Graz, 651-660.

UNESCO (2016) Dong Van Karst Plateau Geopark, United Nations Educational, Scientific and Cultural organization (UNESCO), Online, URL www.unesco.org/new/en/hanoi/natural-sciences/geoparks/ (19.01.2016).

Van T.T., Lagrou D., Masschelein J., Dusar M., Ke T.D., Viet H.A., Quyet D.X., Thang D.V., Chung H.T. and Anh D.T. (2004) Karst Water Management in Dong Van and MeoVac Districts, Ha Giang Province, Vietnam. Contribution of Geological and speleological investgations. In: Proceedings of the International Transdisciplinary Conference on Development and Conservation of Karst Regions, Hanoi, Vietnam.

44 - 50 Water supply in Uyoma in Rarieda District, Kenya

[1] Tritz, C.: Wasserversorgung in Uyoma im Distrikt Rarieda in Kenia. Masterabschlussarbeit an der Hochschule für Technik und Wirtschaft des Saarlandes, Saarbrücken 2014 (unpublished).

[2] N.N.: upload.wikimedia.org/wikipedia/commons/7/7c/Kenya_Map.png, taken on 06/04/2016.

[3] N.N.: OpenCycleMap Landscape, opencyclemap.org, taken on 01/12/2015.

[4] N.N.: Bestandsaufnahme Wasserversorgung Uyoma, Bericht des Rotary Club Neunkirchen/Saar, no date (unpublished).

[5] Hanus, F.; Hornecker, H.: Documents und personal communication of the water project „West Uyoma in Rarieda District in Kenya”, Rotary Distrikt 1860, Saarbrücken 2014 (unpublished).

[6] Finkler, M.; von Bierbrauer, A.; Scheid, D.; Groß, G.: Das Rarieda/Kenia Distriktprojekt, www.rotary1860.org/distrikt/02_foundation/Global_Grants/2013-02-15-kenia.pdf, taken on 16/03/2016.

[7] N.N.: Kenya Bureau of Standards (KEBS), August 2014.

[8] N.N.: Verordnung über die Qualität von Wasser für den menschlichen Gebrauch (Trinkwasserverordnung – TrinkwV 2001), "Trinkwasserverordnung in der Fassung der Bekanntmachung vom 2. August 2013 (BGBl. I S. 2977), die durch Artikel 4 Absatz 22 des Gesetzes vom 7. August 2013 (BGBl. I S. 3154) geändert worden ist".

[9] Rossman, L.A.: EPANET 2.0, User Manual. National Risk Management Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, September 2000.

[10] N.N.: Documents and personal communications, Kenya National Bureau of Statistics, August 2014.

[11] N.N.: WHO Water, Sanitation, Hygiene and Health Unit: Technical notes on drinking water, sanitation and hygiene in emergencies, Juli 2013,

www.who.int/water_sanitation_health/publications/2011/WHO_TN_09_How_much_water_is_needed.pdf, taken on 05/04/2016.

[12] N.N.: QGIS – freies Open-Source-Geographisches-Informationssystem, Benutzerhandbuch 2.2 der Software QGIS, www.qgis.org, taken on 01/06/2014.

[13] DVGW: Technische Regel, Arbeitsblatt GW 303-1, Berechnung von Gas- und Wasserrohrnetzen – Teil 1: Hydraulische Grundlagen, Netzmodellierung und Berechnung, Bonn, October 2006.

[14] DVGW: Technische Regel, Arbeitsblatt W 400-1, Wasserverteilungsanlagen – Teil 1: Planung, Bonn, October 2004.

61 - 63 NIVA: A new "high-resolution" computer simulator ...

Nizzetto, L., Butterfield, D., Futter, M., Lin, Y., Allan, I., Larssen, T., 2016. Assessment of contaminant fate in catchments using a novel integrated hydrobiogeochemical-multimedia fate model. Science of the Total Environment 544, 553-563.

Sharma, B.M., Bharat, G.K., Tayal, S., Larssen, T., Bečanová, J., Karásková, P., Whitehead, P.G., Futter, M.N., Butterfield, D., Nizzetto, L., 2016. Perfluoroalkyl substances (PFAS) in river and ground/drinking water of the Ganges River basin: Emissions and implications for human exposure. Environmental Pollution 208, Part B, 704-713.

Lu, Q., Futter, M.N., Nizzetto, L., Bussi, M.D., Jurgens, M.D., Whitehead, P.G., 2016. Fate and Transport of Polychlorinated Biphenyls (PCBs) in the River Thames Catchment – Insights from a Coupled Multimedia Fate and Hydrobiogeochemical Transport Model. Science of the Total Environment In review.

Sanka, O., Kalina, J., Lin, Y., Deutsher, J., Futter, M.N., Butterfield, D., Brabec, K., Nizzetto, L., 2016. Modeling hydrological and biogeochemical controls of the dissipation of p,p’-DDT from soils. Environmental Science and Technology In review.

95 - 102 The biological impact of transformation products

[1] K. Balapure, N. Bhatt, and D. Madamwar, “Mineralization of reactive azo dyes present in simulated textile waste water using down flow microaerophilic fixed film bioreactor,” Bioresour. Technol., vol. 101, pp. 9049–9057, 2010.

[2] L. Yu and Y. M. Luo, “The adsorption mechanism of anionic and cationic dyes by Jerusalem artichoke stalk-based mesoporous activated carbon,” J. Environ. Eng., vol. 2, pp. 220–229, 2014.

[3] K. Hunger, Industrial Dyes: Chemistry, Properties, Applications. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2003.

[4] R. G. Saratale, G. D. Saratale, J. S. Chang, and S. P. Govindwar, “Bacterial decolorization and degradation of azo dyes: A review,” J. Taiwan Inst. Chem. Eng., vol. 42, no. 1, pp. 138–157, 2011.

[5] S. Moustafa, “Process Analysis of textile Manufacturing. Environmental Impacts of Textile Industries,” UNESCO-IHE; Delft, Niederlande, 2008.

[6] J. Easton, “The dye maker´s view. In: Cooper P. editor. Colour in dyehouse effluent,” Soc. Dye. Colour., pp. 9–21, 1995.

[7] H. A. Erkurt, A. G. Kostianoy, J. De Boer, P. Garrigues, J. Gu, K. C. Jones, T. Knepper, A. Newton, and D. L. Sparks, “Biodegradation of Azo Dyes,” in The Handbook of environmental chemistry, vol. 9, H. A. Erkurt, Ed. Springer Verlag Berlin Heidelberg, 2010.

[8] F. P. Van der Zee and F. J. Cervantes, “Impact and application of electron shuttles on the redox (bio)transformation of contaminants: a review.,” Biotechnol. Adv., vol. 27, no. 3, pp. 256–277, 2009.

[9] C. G. Kumar and P. Mongolla, “Microbial Degradation of Synthetic Dyes in Wastewaters,” in Environmental Science and Engineering, S. N. Singh, Ed. Heidelberg, New York, Dordrecht, London: Springer International Publishing Switzerland, 2015.

[10] S. Ozdemir, K. Cirik, D. Akman, E. Sahinkaya, and O. Cinar, “Treatment of azo dye-containing synthetic textile dye effluent using sulfidogenic anaerobic baffled reactor.,” Bioresour. Technol., vol. 146, pp. 135–143, 2013.

[11] H. A. Eskurt, “Biodegradation of Azo dyes,” in The Handbook of environmental chemistry, vol. 9, Berlin Heidelberg: Springer Verlag, 2010.

[12] R. A. Case, M. E. Hosker, D. B. McDonald, and J. T. Pearson, “Tumours of urinary bladder in workmen engaged in the manufacture and use of certain dyestuff intermediates in the British chemical industry,” Br. J. Ind. Med. Repr. 1993, vol. 11, no. 75, 1954.

[13] E. A. Sweeney, J. K. Chipman, and S. J. Forsythe, “Evidence for direct-acting oxidative genotoxicity by reduction products of azo dyes.,” Environ. Health Perspect., vol. 102, pp. 119–122, 1994.

[14] J. A. Libra, M. Borchert, L. Vigelahn, and T. Storm, “Two stage biological treatment of a diazo reactive textile dye and the fate of the dye metabolites,” Chemosphere, vol. 56, pp. 167–180, 2004.

[15] R. M. Christie, Colour Chemistry. Cambridge, UK: The Royal Society of Chemistry, 2015.

[16] A. Plum and A. Rehorek, “Strategies for continuous on-line high performance liquid chromatography coupled with diode array detection and electrospray tandem mass spectrometry for process monitoring of sulphonated azo dyes and their intermediates in anaerobic–aerobic bioreactors,” J. Chromatogr. A, vol. 1084, pp. 119–133, 2005.

[17] A. Fakouri, “Entwicklung von prozessnahen Teilstrom-Abwasser- Behandlungsverfahren auf der Basis biologischer und sonochemischer Reaktorstufen mit online-prozessanalytischer Verfahrensoptimierung,” Dissertation, Universität zu Köln, 2011.

[18] J. Ohrem, “Charakterisierung des biologischen Abbaus von Azofarbstoffen am Beispiel von DRIMARO sowie des sonochemischen Abbaus von ausgewählten perfluorierten Tensiden,” Disseration, Universität zu Köln, 2012.

[19] K. Mocha, “Process Control System,” Leverkusen, 2016.

[20] sc::can Messtechnik GmbH, “Produktdatenblatt: spectro::lyserTM,” 2016. [Online]. Available: www.s-can.at/medialibrary/datasheets/spectrolyser_ww_EN.pdf. [Accessed: 03-Feb-2016].

[21] DIN Deutsches Insitut für Normung e.V., DIN EN ISO 20079: Wasserbeschaffenheit - Bestimmung der toxischen Wirkung von Wasserinhaltsstoffen und Abwasser gegenüber Wasserlinsen (Lemna Minor). Berlin: Beuth Verlag GmbH, 2006.

[22] M. Cleuvers and H.-T. Ratte, “Phytotoxicity of coloured substances: is Lemna duckweed an alternative to the algal growth inhibition test?,” Chemosphere, vol. 49, no. 1, pp. 9–15, 2002.

[23] L. Casieri, G. C. Varese, A. Anastasi, V. Prigione, K. Svobodová, V. Filippelo Marchisio, and C. Novotný, “Decolorization and detoxication of reactive industrial dyes by immobilized fungi Trametes pubescens and Pleurotus ostreatus.,” Folia Microbiol. (Praha)., vol. 53, no. 1, pp. 44–52, 2008.

[24] M. Morath, “Entwicklung und Validierung eines Bildanalyse-Verfahrens zur automatischen Bestimmung der Toxizität von Wasserproben mit Biosensoren,” Bachelorabeit, Fachhochschule Köln, 2014.

[25] A. Rehorek, A. Plum, M. Senholdt, B. Gornacka, C. Györgyicze, and B. Yildiz (Fachhochschule Köln), “Abschlussbericht Forschungsprojekt zur Verbesserung des Abbaus von Textilabwässern in einem anaerob / aerob Reaktor zur Vorbehandlung von Abwasserkonzentraten,” 2006.

[26] M. Kudlich, Der Abbau von Azofarbstoffen durch Mikroorganismen. Dissertation Universität Stuttgart, Aachen: Shaker Verlag, 1997.

[27] M. Stüber, “Vorkommen und Verhalten von Naphthalinsulfonaten in der biologischen Abwasserbehandlung,” Dissertation, Technische Universität Berlin, 2005.

[28] T. Storm, “Aromatische Sulfonate: Untersuchungen zum Stoffverhalten in Industrieabwasser und aquatischer Umwelt mit HPLC-MS,” Dissertation, Technische Universität Berlin, 2002.

[29] S. Radić, D. Stipaničev, P. Cvjetko, M. Marijanović Rajčić, S. Sirac, B. Pevalek-Kozlina, and M. Pavlica, “Duckweed Lemna minor as a tool for testing toxicity and genotoxicity of surface waters.,” Ecotoxicol. Environ. Saf., vol. 74, no. 2, pp. 182–187, 2011.

[30] A. Gottlieb, C. Shaw, A. Smith, A. Wheatley, and S. Forsythe, “The toxicity of textile reactive azo dyes after hydrolysis and decolourisation,” J. Biotechnol., vol. 101, pp. 49–56, 2003.

[31] C. C. Hsueh, B. Y. Chen, and C. Y. Yen, “Understanding effects of chemical structure on azo dye decolorization characteristics by Aeromonas hydrophila,” J. Hazard. Mater., vol. 167, pp. 995–1001, 2009.

[32] C. Wang, A. Yediler, D. Lienert, Z. Wang, and A. Kettrup, “Toxicity evaluation of reactive dyestuffs, auxiliaries and selected effluents in textile finishing industry to luminescent bacteria Vibrio fischeri.,” Chemosphere, vol. 46, no. 2, pp. 339–344, 2002.




Water Solutions 1|2016: The References

18 - 27 NIVA Myanmar: Pilot introducing ...

[1] Fujita, K., Mieno, F. and Okamoto, I.: Myanmar’s Economic Transformation after 1988. In: Fujita, K., Mieno, F. and Okamoto, I. (eds): The Economic Transition in Myanmar After 1988: Market Economy Versus State Control. NUS Press Singapore 2009.

[2] Arnott, D.: Burma/Myanmar: How to read the generals' "roadmap" - a brief guide with links to the literature, 2004. www.ibiblio.org/obl/docs/how10.htm

[3] MacFarquhar, N.: U. N. Doubts Fairness of Election in Myanmar. New York Times 2010. www.nytimes.com/2010/10/22/world/asia/22nations.html

[4] Census April 2014: The 2014 Myanmar Population and Housing Census Highlights of the Main Results Census Report Volume 2 – A. Department of Population Ministry of Immigration and Population May 2015. drive.google.com/file/d/0B067GBtstE5TWkJiaThxY08zZVU/view

[5] Wikipedia: List of ethnic groups in Myanmar. Last modified 2016. en.wikipedia.org/wiki/List_of_ethnic_groups_in_Myanmar

[6] Irrigation Department: Outline of the Irrigation Department. The Republic of the Union of Myanmar Ministry of Agriculture and Irrigation, Irrigation Department, October 2014, pp. 61.

[7] Nam, K.-Y., Cham, W. M. and Halili, P. R.: Power Sector Development in Myanmar. ADB Economics Working Paper Series No. 460, October 2015.

[8] Haruyama, S. and Hlaing, K. T.: Assessment of land cover and land use changes of the Bago river basin. In: Haruyama, S. (ed.): Morphometoric Property and Flood Equation – lesson from the Bago River Basin, Myanmar. Terrapub Tokyo 2003.

[9] SYKE and Myanmar UNDP: Needs Assessment for Effective Implementation of the Environmental Conservation Law in Myanmar. Draft version, August 2015.

[10] Asian Development Bank: Myanmar Unlocking the Potential. Mandaluyong City, Philippines, Asian Development Bank, 2014. Country Diagnostic Study ISBN 978-92-9254-622-9 (Print), 978-92-9254-623-6 (e-ISBN), 978-92-9254-624-3.

[11] The President's office: President U Thein Sein delivered address at the 4th Green Economy. Green Growth Forum Nay Pyi Taw, 3 Feb 2015.

[12] Kattelus M.: Planning and Management of Water Resources in Myanmar: Role of Agriculture and Hydropower. Master thesis, Espoo, 31st August 2009.

[13] UNESCO: Introduction to the IWRM Guidelines at River Basin Level. International Hydrological Programme (IHP), Network of Asian River Basin Organizations (NARBO). United Nations Educational, Scientific and Cultural Organization, Paris, 2009. unesdoc.unesco.org/images/0018/001850/185074e.pdf

[14] AD: Urban Development and Water Sector Assessment, Strategy, and Road Map. DB Phillipines report ISBN 978-92-9254-286-3 (Print), 2013  

30 - 34 Biofilm formation ...

[1] Bralts, V. F., Wu, I. P. and Gitlin, H.M.: Drip irrigation uniformity: considering emitter plugging. Trans. ASAE 24 (1981), p.1234–1240.

[2] Nakayama, F.S. and Bucks, D.A.: Water quality in drip/trickle irrigation. Irrig. Sci. 12 (1991), p. 187–192.

[3] Li, G. B., Li, Y. K., Xu, T. W., Liu, Y. Z., Jin, H., Yang, P. L., Yan, D. Z., Ren, S. M. and Tian, Z. F.: Effects of average velocity on the growth and surface topography of biofilms attached to the reclaimed wastewater drip irrigation system laterals. Irrig. Sci. 30 (2011.), p. 103–113.

[4] Haisch, C.: Optical tomography. Annu. Rev. Anal. Chem. 5 (2012), p. 57–77. [5] Wagner, M., Taherzadeh, D., Haisch, C. and Horn, H.: Investigation of the mesoscale structure and volumetric features of biofilms using optical coherence tomography. Biotechnol. Bioeng. 107 (2010), p. 844–853. 

35 - 41 Resource-efficient ...

Bieker, S. 2015: Infrastructure solutions for fast growing cities – dimensions of adaptability requirements and urban resilience. In: Proceedings IWA Cities of the Future Conference „Transitions to the Urban Water Services of Tomorrow (TRUST)” in Mülheim an der Ruhr, Germany. 28. - 30. April 2015; 298-308.

Bieker, S.; Cornel, P. 2014: Semizentrale Ver- und Entsorgungssysteme für schnell wachsende urbane Räume (Semicentralized Supply and Treatment Systems for fast growing urban areas). In: proceedings 23 zur 47. ESSENER TAGUNG für Wasser- und Abfallwirtschaft „Ist unsere Wasserwirtschaft zukunftsfähig?“, ed. Pinnekamp, J.: Gewässerschutz – Wasser – Abwasser (GWA), Essen, 19.-21. March 2014. 28/1 - 28/12. Bieker, S.; Zeig, C. 2012: Integrated Semicentralized Supply and Treatment Systems. In: Blue Facts 2012 - International Journal of Water-Management 2012: 82-89.

Bieker, S.; Zeig, C.; Cornel, P. 2012: Semizentral Germany: Energy self-sufficient infrastructure systems for livable cities of the future, in: Lazarova, V., Kwang, H. C., Cornel, P., Water Energy Interaction of Water Reuse, IWA Publishing 2012, London.

Bieker, S. 2009: Semizentrale Ver- und Entsorgungssysteme für schnell wachsende urbane Räume. Untersuchung empfehlenswerter Größenordnungen (Semicentralized Supply and Treatment Systems for fast growing urban areas. Study on recommendable magnitudes). Doctoral thesis. WAR foundation association; Darmstadt.

Burdett & Rode 2007: The Urban Age Project. In: Burdett, R. & D. Sudjic (Hrsg.): The Endless City. Phaidon, London [u.a.]. 2007

Cornel, P.; Meda, A.; Bieker, S. 2011: Wastewater as a Source of Energy, Nutrients, and Service Water. In: Wilderer, Peter (Hrsg.) Treatise on Water Science, vol. 4, pp. 337-375 Oxford; Academic Press.

Die WELT 2014: Peking „fast unbewohnbar für menschliche Wesen“ (Beijing “nearly uninhabitable for human beeings“). Published on 2/17/2014. DWA (ed.) 2014:

DWA-A 272 Grundsätze für die Planung und Implementierung Neuartiger Sanitärsysteme (NASS) (DWA-A 272 basics for planning and implementation of new water infrastructure concepts)-

gtai (Germany Trade and Invest) 2015: Chinas Wasser- und Abfallwirtschaft braucht Investitionen (China’s water and waste management needs investments). www.gtai.de/GTAI/Navigation/DE/Trade/Maerkte/suche,t=chinas-wasser-und-abfallwirtschaft-braucht-investitionen,did=1270206.html Online accessed on 7/26/2015.

Günthert, F. W. & Erich Reicherter 2001: Investitionskosten der Abwasserentsorgung (investment costs of wastewater disposal). Oldenbourg-Industrieverlag, München.

Hu, Y.; Cheng, H. 2013 Water pollution during China's industrial transition, Environmental Development, 8, 57-73.

Meinzinger, F.; Oldenburg, M. 2009: Characteristics of source-separated household wastewater flows: a statistical assessment. Wat. Sci. Tech. 59(9), 1785-1791.

Sun, F., Yang, Z., Huang (2014) Challenges and Solutions of Urban Hydrology in Beijing, Water Resources Management 28(11), 3377-3389.

Todt, D.; Heistadb, A.; Jenssena, P. 2015: Load and distribution of organic matter and nutrients in a separated household wastewater stream. Environmental Technology 36(12), 1584-1593.

Tolksdorf, J.; Bieker, S.; Lu, D.; Wagner, M.; Cornel, P. 2015a: SEMIZENTRAL (infrastructure solution for fast growing cities) – From scientific approach to implementation, In: Proceedings IWA Cities of the Future Conference – TRUST2015. Mühlheim an der Ruhr (Germany) 28-30 April 2015, 92-106.

Tolksdorf, J.; Bieker, S.; Lu, D.; Cornel, P. 2015b: Semizentrale Ver- und Entsorgungssysteme für urbane Räume – erstmalige Realisierung in Qingdao, China, (Semicentralized Supply and Treatment Systems for Urban Areas – First Implementation in Qingdao, China), gwf – Wasser|Abwasser, 12/2015, 1254-1262.

Tolksdorf, J.; Lu, D.; Cornel, P. 2016: First implementation of a SEMIZENTRAL resource recovery center. Journal of Water Reuse and Desalination, in press, doi:10.2166/wrd.2016.129.

United Nations, Department of Economic and Social Affairs, Population Division 2014: World Urbanization Prospects. The 2014 Revision Highlights. New York 2014.

Wagner, M.; Bieker, S. 2013: Potential für gemeinsame Innovationen (Potentials for joint innovations). In: Ministry of Finance of the P.R. of China (ed.) Abwasser nutzen - Gewässer schützen: Bilanz und Chancen der chinesisch-deutschen Finanziellen Zusammenarbeit (Using wastewater – Protecting water bodies: results and opportunities of the Chinese-German financial cooperation). 19-23.

46 - 54 Uni Koblenz/Landau Wasser 3.0

[1] UN World Water Development Report: Water for a Sustainable World. Paris, 2015, p. 19.

[2] Schuhen, K.: Funktionalisierte, strukturierte Materialen für sauberes Wasser. Nachrichten aus der Chemie, 2014, 62.

[3] Schuhen, K.: Polykondensiertes Hybridkieselsäurematerial zur Fixierung anthropogener Verunreinigungen aus einem aquatischen Umfeld. Patent 2015.

[4] Corriu, R., Leclerq, D.: Neue Entwicklungen der Molekülchemie für Sol-Gel-Prozesse. Angewandte Chemie, 1996, p. 1524–1540.

[5] Moreau, J. J. E. et al.: A Better Understanding of the Self-Structuration of Bridged Silsesquioxanes. Angewandte Chemie, 2004, 116.

[6] Moreau, J. J. E. et al.: Shape-Controlled Bridged Silsesquioxanes: Hollow Tubes and Spheres. Chem. Eur. J. 9, 2003, 7.

[7] earthwise.bgs.ac.uk/index.php, 2015

[8] The Gambia Bureau of Statistics: The Gambia 2013 Population and Housing Census Preliminary Results. 2013, p. 9.

[9] Lamour, J. M. Y.: Integrated coastal area management for reducing vulnerability to Climate Change in the Gambia: Framework and Implementation Plan. UNDP/UNEP Study, Banjul, 2010.

[10] Louis Berger Group and GAP Consultants: Waste Strategy Report: Solid Waste Management Study for the Greater Banjul Area and Brikama, 2003.

[11] Lamour J. M. Y. and Duchscherer M.: Integrated Waste-to-Energy and Waste Management Project at Bakoteh Landfill: Pre-Feasibility Study, 2015.

[12] Lamour, J. M. Y.: Environmental Impact Assessment of the Greater Banjul Area Water Supply System. Ballast Nedam/NAWEC/NEA, 01/2008.

[13] Water Utility Partnership for Capacity Building Africa: Better Water and Sanitation for the Urban Poor. Good Practice from sub-Saharan Africa, Nairobi, 2003, pp. 65.

55 - 65 Uni Kaiserslautern/Stuttgart Case study Serbia

[1] Hoff, H.: Understanding the Nexus. Background Paper for the Bonn 2011 Conference: The Water, Energy and Food Security Nexus. Stockholm Environment Institute Stockholm 2011.

[2] The Statistical Office of the Republic of Serbia: Wastewater from settlements in the Republic of Serbia, 2012. 2013. webrzs.stat.gov.rs/WebSite/repository/documents/00/01/04/17/ZS40_129_srb+lat.pdf

[3] Government of the Republic of Serbia: Serbian Energy Development Strategy to 2025, with projections to 2030. 2014.

[4] Dodic, S., Zekic, V., Rodic, V., Tica, N., Dodic, J. and Popov, S.: Situation and perspectives of waste biomass application as energy source in Serbia. Renewable and Sustainable Energy Reviews 14 (2010), p.3171–3177.

[5] Government of the Republic of Serbia: Draft of the Energy Development Strategy of the Republic of Serbia for the period until 2025 with projections until 2030. 2013.

[6] EEA: “Waste – State and Impact Serbia.” Accessed June 1, 2012. 2011. www.eea.europa.eu.

[7] SEPA – Serbian environmental protection agency: Stanje zivotne sredine u Repubici Srbiji – kratak pregled. 2014.

[8] Rakijaš, M.: New Regulation of Waste Disposal and the Current State in Serbia. Paper for the International Conference – Waste Waters, Municipal Solid Wastes and Hazardous Wastes. Belgrad 2012, p. 175– 81.

[9] Government of the Republic of Serbia: National Environmental Approximation Strategy. 2011. www.misp-serbia.rs/wp-content/uploads/2010/05/EAS-Strategija-ENG-FINAL.pdf

[10] Cvetkovic S., Kaludjerovic Radoicic T., Vukadinovic B. and Kijevcanin M.: Potentials and status of biogas energy sources in the Republic of Serbia. Renewable and Sustainable Energy Reviews 31 (2014), p. 407–416.

[11] Husemann, J., Espinosa-Gutiérrez, T. Y. B., Srinivasan, S., Al Janabi, F. G. and Zhang, L.: Towards Nexus Approach: Case Studies on Integrated Management of Water, Soil and Waste. Proceedings of the International Kick-Off Workshop: Advancing a Nexus Approach to the Sustainable Management of Water, Soil and Waste. Dresden, Germany 2013, p. 119–142.

[12] Henze, M.: Biological Wastewater Treatment: Principles, Modelling and Design. IWA Publishing 33 (2008), 3–1.

[13] Tchobanoglous, G. et al.: Wastewater Engineering: Treatment and Reuse. Metcalf & Eddy McGraw-Hill 2003.

[14] ATV ATV-DVWK-A 198E: Standardization and Derivation of Dimensioning Values for Wastewater Facilities. ATV-DVWK Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall e.V. 2003.

[15] DWA: Abwasserbehandlung: Gewässerbehandlung, Bemessungsgrundlagen, mech-und biolog. Verfahren, Reststoffe aus Abwasserbehandlung, Kleinkläranlagen Weiterbildendes Studium Wasser und Umwelt. Bauhaus-Universität Weimar Weimar 2006.

[16] Hammer, M., Giljum, S., Bargigli, S. and Hinterberger, F.: Material Flow Analysis on the Regional level: Questions, Problems, Solutions (No. NEDS Working Papers 2). Hamburg 2003.

72 - 76 Wastewater treatment plants ...

[1]   Europäische Kommission: State of the Energy Union 2015.

[2]   Seibert-Erling, G. (2015): Energiewende bringt Licht- und Schatten für Kläranlagen (Teil 1). Wasserwirtschaft, Wassertechnik (wwt), 10/2015, 27-31.

[3]   DWA (2013): 25th Benchmarking of German wastewater treatment plants.

[4]   Geiss, P. (2015): Vom Kraftwerk zum Klärkraftwerk – Maschinen- und steuerungstechnische Modernisierung optimiert Kläranlagenbetrieb und Energiebilanz. Wasserwirtschaft, Wassertechnik (wwt), 3/2015, 31-33.

[5]   Heidrich, E. S. et al. (2010): Determination of the Internal Chemical Energy of Wastewater. Environmental Science & Technology 45 (2), 827-832.

[6]   Remy, C.; Boulestreau, M. and Lesjean, B. (2014): Proof of concept for a new energy-positive wastewater treatment scheme. Water Science and Technology 70 (10), 1709-1716.

77 - 78 Reliable demanganisation ...

[1] C. Höfer, U. Fischer, H. Vedder Katalytische Entmanganung im neutralen Bereich, gwf Wasser/Abwasser 9/2010.  

[2] C. Höfer, U. Fischer, H. Vedder Zuverlässige Entmanganung im neutralen Bereich mit Akdolit® Mn FS 1, gwf Wasser/Abwasser 4/2012.  

[3] Ordinance on the Amendment of the German Drinking Water Ordinance, as amended on 21st May, 2001.  

[4] German Ordinance on Natural Mineral Water and Table Water, as amended on 1st December, 2006.  

[5] Chemical analysis by AWA Institute, 2015.

82 - 86 Uni Koblenz/Landau Soil based wastewater treatment

[1] Galili, E., Stanley, D. J., Sharvit, J. and Weinstein-Evron, M.: Evidence for Earliest Olive-Oil Production in Submerged Settlements off the Carmel Coast, Israel. Journal of Archaeological Science 24 (1997) No. 12, p. 1141–1150.

[2] Namdar, D., Amrani, A., Getzov, N. and Milevski, I.: Olive oil storage during the fifth and sixth millennia BC at Ein Zippori, Northern Israel. Israel Journal of Plant Sciences 62 (2015) No. 1–2, p. 65–74.

[3] Central Bureau of Statistics: Statistical Abstract of Israel – Agricultural Output, by Industry and Product. 2015.

[4] Palestinian Central Bureau of Statistics: Result Of Olive presses Survey In Palestine, 2014. 2014.

[5] Laor, Y., Raviv, M. and Capua, S.: The Israeli olive oil industry and viable solutions for its associated wastes. Proceedings of the International Conference on New Technologies for the Treatment and Valorization of Agro Byproducts, 3–5 October 2007. Terni, Italy 2007.

[6] Hanifi, S. and El Hadrami, I.: Olive mill wastewaters: diversity of the fatal product in olive oil industry and its valorization as agronomical amendment of poor soils: a review. Journal of Agronomy 8 (2009) No. 1, p. 1–13.

[7] Roig, A., Cayuela, M. L. and Sanchez-Monedero, M. A.: An overview on olive mill wastes and their valorisation methods. Waste Management 26 (2006) No. 9, p. 960–969.

[8] Aranda, V., Macci, C., Peruzzi, E. and Masciandaro, G.: Biochemical activity and chemical-structural properties of soil organic matter after 17 years of amendments with olive-mill pomace co-compost. Journal of environmental management 147 (2015), p. 278–285.

[9] Azbar, N., Bayram, A., Filibeli, A., Muezzinoglu, A., Sengul, F. and Ozer, A.: A review of waste management options in olive oil production. Crit. Rev. Environ. Sci. Technol. 34 (2004), p. 209–247.

[10] Nunes, J., Pereira, S., Albardeiro, A., Silva, C., Pintado, C. and Lopez-Pineiro, A.: Potentialities of olive mill waste utilisation as organic fertiliser for Mediterranean Region soils. Revista de Ciencias Agrarias (Portugal) (2001).

[11] Keren, Y., Borisover, M. and Bukhanovsky, N.: Sorption interactions of organic compounds with soils affected by agricultural olive mill wastewater. Chemosphere 138 (2015), p. 462–468.

[12] Peikert, B., Schaumann, G. E., Keren, Y., Bukhanovsky, N., Borisover, M., Abo Garfha, M., Shoqeir Hasan, J. and Dag, A.: Characterization of topsoils subjected to poorly controlled olive oil mill wastewater pollution in West Bank and Israel. Agriculture, Ecosystems and Environment 199 (2015) No. 1, p. 176–189.

[13] Kurtz, M., Peikert, B., Brühl, C., Dag, A., Zipori, I., Shoqeir, J. and Schaumann, G.: Effects of Olive Mill Wastewater on Soil Microarthropods and Soil Chemistry in Two Different Cultivation Scenarios in Israel and Palestinian Territories. Agriculture 5 (2015) No. 3, p. 857.

[14] Steinmetz, Z., Kurtz, M. P., Dag, A., Zipori, I. and Schaumann, G. E.: The seasonal influence of olive mill wastewater applications on an orchard soil under semi-arid conditions. Journal of Plant Nutrition and Soil Science 178 (2015), p. 641–648.

[15] Tamimi, N., Diehl, D., Njoum, M., Marei Sawalha, A. and Schaumann, G. E.: Effects of Olive Mill Wastewater disposal on Soil: Interaction Mechanisms during Different Seasons. Journal of Hydrology and Hydromechanics accepted: DOI: 10.1515/johh-2016-0017. 2016.

[16] Buchmann, C., Felten, A., Peikert, B., Muñoz, K., Bandow, N., Dag, A. and Schaumann, G. E.: Development of phytotoxicity and composition of a soil treated with olive mill wastewater (OMW): An incubation study. Plant and Soil 386 (2015) No. 1, p. 99–112.

[17] Peikert, B. and Schaumann, G. E.: Incubation experiment with OMW treated soil. (In preparation).

[18] Chartzoulakis, K., Psarras, G., Moutsopoulou, M. and Stefanoudaki, E.: Application of olive mill wastewater to a Cretan olive orchard: Effects on soil properties, plant performance and the environment. Agriculture, Ecosystems & Environment 138 (2010) No. 3–4, p. 293–298.

[19] Magdich, S., Ben Ahmed, C., Jarboui, R., Ben Rouina, B., Boukhris, M. and Ammar, E.: Dose and frequency dependent effects of olive mill wastewater treatment on the chemical and microbial properties of soil. Chemosphere 93 (2013) No.9, p. 1896–1903.

[20] Mekki, A., Dhouib, A. and Sayadi, S.: Changes in microbial and soil properties following amendment with treated and untreated olive mill wastewater. Microbiological Research 161 (2006) No. 2, p. 93–101.

87 - 91 City of Münster/StEB Cologne Artificial neural networks ...

[1] UBA: Umweltbundesamt Texte 11/08. Steigerung der Energieeffizienz auf kommunalen Kläranlagen (Increase of the energy efficience of municipal wastewater treatment plants). 2008 www.umweltbundesamt.de/sites/default/files/medien/publikation/long/3347.pdf, p. 53 (accessed 21 May 2014).

[2] Henze, M., Grady, C. P. L. Jr, Gujer, W., Marais, G. v. R. and Matsuo, T.: Activated Sludge Model No. 1. IAWPRC Scientific and Technical Report No. 1, London 1987.

[3] Henze, M., Gujer, W., Mino, T., Matsuo, T., Wentzel, M. C. and Marais, G. v. R.: Activated Sludge Model No. 2. IAWPRC Scientific and Technical Report No. 1, London 1995.

[4] Henze, M., Gujer, W., Mino, T., Matsuo, T., Wentzel, M. C., Marais, G. v. R. and Van Loosdrecht, M. C. M.: Activated Sludge Model No. 2d. Water Science and Technology 39 (1999) No. 1, p. 165–182.

[5] Gujer, W., Henze, M., Mino, T. and Van Loosdrecht, M. C. M.: Activated Sludge Model No. 3. Water Science and Technology 39 (1999) No. 1, p. 183–193.

[6] Robecke, U. and Cornel, P.: Modellierung abwassertechnischer Prozesse (Modelling of wastewater processes). UmweltMagazin (2013) No. 6, p. 36–39.

[7] atlan-tec Systems GmbH: NeuroModel® Version 3.1.17, 2011.

[8] StEB Köln: Funktionsbeschreibung des Großklärwerks Köln-Stammheim (Functional description of the wastewater treatment plant Cologne-Stammheim). Unveröffentlicht (unpublished), 2013.

[9] aquatune – Dr. Gebhardt & Co. GmbH: Engineering Norm 0010596, Standard-Ablaufschema Neuro-Projekte (Standard scheme neuro-projects). Version 4, Revision 2. Unveröffentlicht (unpublished), 2005.

[10] DWA-M 229-1: Systeme zur Belüftung und Durchmischung von Belebungsanlagen, Teil 1 – Planung, Ausschreibung und Ausführung (Systems for aeration and mixing of activated sludge plants, part 1 – planning, invitation to tender and realisation). Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall e. V., Hennef 2013.

[11] ATV-Handbuch: Biologische und weitergehende Abwasserreinigung (Biological and advanced wastewater treatment). 4. Auflage. Verlag Ernst und Sohn Berlin 1997.

[12] Wagner, M und Günkel, T.: Belüftungssysteme in warmen und kalten Klimaten (Aeration system in warm and cold climates). Schlussbericht zum Verbundprojekt Exportorientierte FuE auf dem Gebiet der Wasserver- und entsorgung, Teil II, Kernprojekt A, Teilprojekt A2, (Final report for the joint project export-oriented R&D on the area of water supply and disposal), 2009.

96 - 98 TU Munich Novel water treatment concepts ...

[1] Huber, M., Hilbig, H., Drewes, J. E. and Helmreich, B.: Einfluss von Auftausalzen auf die Remobilisierung von auf Filtermaterialien zur Behandlung von Verkehrsflächenabflüssen zurückgehaltenen Schwermetallen. Aqua Urbanica 2015, Stuttgart, 07–08 October 2015. Stuttgarter Berichte zur Siedlungswasserwirtschaft, Vol. 225. ISBN 13: 978-3-8356-7292-5, p. 123–130.

[2] Vesting, A., Huber, M., Giga, A., Helmreich, B. and Wichern, M.: Erfahrungen aus Praxisuntersuchungen eines dezentralen Behandlungssystems zur Reduktion von Kohlenwasserstoffen und organischen Spurenstoffen aus Verkehrsflächenabflüssen. Aqua Urbanica 2015, Stuttgart, 7–8 October 2015. Stuttgarter Berichte zur Siedlungswasserwirtschaft, Vol. 225. ISBN 13: 978-3-8356-7292-5, p. 131–141.

[3] Scherson, Y. D., Wells, G. F., Woo, S.-G., Lee, J., Park, J., Cantwell, B. J. and Criddle, C. S.: Nitrogen removal with energy recovery through N2O decomposition. Energy & Environmental Science 6 (2013) No. 1, p. 241–248.

[4] Ravishankara, A. R., Daniel, J. S. and Portmann, R. W.: Nitrous oxide (N2O): The dominant ozone-depleting substance emitted in the 21st century. Science 326 (2009) (5949), p. 123–125.

[5] Haisch, C. (2012): Photoacoustic spectroscopy for analytical measurements. Measurement Science and Technology 23(1), 012001.

[6] Koch, K., Weißbach, M., Leix, C., Horstmeyer, N. and Drewes, J. E.: Gezielte Erzeugung von Lachgas als alternative Behandlung stickstoffreicher Abwasserteilströme einschließlich einer Energierückgewinnung. Umwelttechnologie und Energie in Bayern (2015), p. 50–53.

[7] Alidina, M., Li, D., Ouf, M. and Drewes, J. E.: Role of primary substrate composition and concentration on attenuation of trace organic chemicals in managed aquifer recharge systems. J. Environmental Management 144 (2014), p. 58–66.

[8] Li, D., Alidina, M. and Drewes, J. E.: Role of Primary Substrate Composition on Microbial Community Structure and Function and Trace Organic Chemical Attenuation in Managed Aquifer Recharge Systems. Applied Microbiology and Biotechnology 98 (2014) No. 10, p. 4347–53.

[9] Regnery, J., Wing, A., Kautz, J. and Drewes, J. E.: Introducing sequential managed aquifer recharge technology (SMART) – From laboratory to full-scale application. Chemosphere (2016) No. 154, p. 8–16.

[10] Letzel, T., Bayer, A., Schulz, W., Heermann, A., Lucke, T., Greco, G., Grosse, S., Schüssler, W., Sengl, M. and Letzel, M.: LC-MS Screening Techniques for Waste Water Analysis and Analytical Data Handling Strategies: Sartans and Their Transformation Products as an Example. Chemosphere 137 (2015), p. 198–206.

[11] Letzel, T.: A Collaborative Approach to Water Analysis. The Column, 12 (2016) No. 2, p. 2–6.

99 - 103 KIT Advanced multi-sensor technologies ...

[1] Holbach, A., Wang, L., Chen, H., Schleicher, N., Hu, W., Zheng, B. and Norra, S. (2013): Water mass interaction in the confluence zone of the Daning River and the Yangtze River – a driving force for algal growth in the Three Gorges Reservoir. Environmental Science and Pollution Research, 20(10), p. 7027–7037.

[2] Holbach, A., Norra, S., Wang, L., Yuan, Y., Hu, W., Zheng, B. and Bi, Y. (2014): Three Gorges Reservoir: density pump amplification of pollutant transport into tributaries. Environmental Science & Technology, 48(14), p. 7798–7806.

[3] Holbach, A., Bi, Y., Yuan, Y., Wang, L., Zheng, B. and Norra, S. (2015): Environmental water body characteristics in a major tributary backwater of the unique and strongly seasonal Three Gorges Reservoir, China. Environmental Science: Processes & Impacts, 17, p. 1641–1653.

112 - 114 Universität der Bundeswehr OpEN Water Brazil

[1] URL: bmbf.nawam-erwas.de/de/foerdermassnahme, 26.01.2016.

[2] URL: latina-press.com/news/179415-brasilien-niedrige-wasserstaende-in-stauwerken-bereiten-stromversorgern-kummer/, 26.01.2016.

[3] Parra, Salomé; Krönlein, Frank; Krause, Steffen; Günthert, Wolfgang (2015): Energiegewinnung im Wasserverteilungsnetz durch intelligentes Druckmanagement – EWID; In: energie | wasser-praxis; 12-2015.

[4] Strasser, Wolfgang (2010): Turbinen in der Trinkwasserversorgung. In: 13. Anwenderforum Kleinwasserkraftwerke, Kempten.

[5] Kramer, Matthias; Wieprecht, Silke (2012): Untersuchungen zum Einsatz von Kleinturbinen in Trinkwasserversorgungsnetzen. Technischer Bericht Nr. 09/2012.

[6] Bahner, Philipp; Voltz, Thomas (2013): Jahresbericht 2013 zum SMWK-Projekt „Energiegewinnung in Trinkwasserversorgungsnetzen in Sachsen“ an der HTW Dresden.

[7] URL: www.ksb.com/ksb-de/Unternehmen/Unternehmerische-Verantwortung/Global-Compact/Prinzipien_und_Instrumente/, 26.01.2016.

118 - 123 Northeast Thailand: New approaches ...

[1] World Health Organization: Global health risks: mortality and burden of disease attributable to selected major risks. World Health Organization Geneva 2009.

[2] El–Serag, H. B. and Rudolph, K. L.: Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology 132 (2007), p. 2557–2576.

[3] Hanson, L. A., Zahn, E. A., Wild, S. R., Döpfer, D., Scott, J. and Stein, C.: Estimating global mortality from potentially foodborne diseases: an analysis using vital registration data. Population Health Metrics 10 (2012) 5.

[4] Scallan, E., Hoekstra, R. M., Angulo, F. J., Tauxe, R. V., Widdowson, M. A., Roy, S. L., Jones, J. L. and Griffin, P. M.: Foodborne illness acquired in the United States – major pathogens. Emerging Infectious Diseases 17 (2011), p. 7–15.

[5] Havelaar, A. H., Haagsma, J. A., Mangen, M. J. J., Kemmeren, J. M., Verhoef, L. P. B., Vijgen, S. M. C., Wilson, M., Friesema, I. H. M., Kortbeek, .L. M., Van Duynhoven, Y. T. H. P. and Van Pelt, W.: Disease burden of foodborne pathogens in the Netherlands, 2009. International Journal of Food Microbiology 156 (2012), p. 231–238.

[6] World Health Organization: WHO initiative to estimate the global burden of foodborne diseases: a summary document. World Health Organization Geneva 2008.

[7] Carlton. E. J., Liang, S., McDowell, J. Z., Li, H., Luo, W. and Remais, J. V.: Regional disparities in the burden of disease attributable to unsafe water and poor sanitation in China. Bulletin of the World Health Organization 90 (2012), p. 578–587.

[8] Prüss-Üstün, A., Bos, R., Gore, F. and Bartram, J.: Safer water, better health: costs, benefits and sustainability of interventions to protect and promote health. World Health Organization Geneva 2008.

[9] Keiser, J. and Utzinger, J.: Food-borne trematodiasis. Clinical Microbiology Reviews 22 (2009), p. 466–483.

[10] Fürst, T., Keiser, J. and Utzinger, J.: Global burden of human food-borne trematodiasis: a systematic review and meta-analysis. Lancet 12 (2012), p. 210–211.

[11] Toledo, R., Esteban, J. G. and Fried, B.: Current status of food-borne trematode infection. European Journal of Clinical Microbiology and Infectious Diseases 31 (2012), p. 1705–1718.

[12] Sripa, B.: Global burden of food-borne trematodiasis. Lancet 12 (2012), p. 171–172.

[13] Khuntikeo, N., Chamadol, N., Yongvanit, P., Loilome, W., Namwat, N., Sithithaworn, P., Andrews, R. H., Petney, T. N., Promthet, S., Thinkhamrop, K., Tawarungruang, C., Thinkhamrop, B. on behalf of the CASCAP investigators: Cohort Profile: Cholangiocarcinoma Screening and Care Program (CASCAP). BMC Cancer 15 (2015) 459.

[14] Saijuntha, W. Sithithaworn, P., Kiatsopit, N., Andrews, R. H. and Petney, T. N.: Liver flukes: Clonorchis and Opisthorchis. In: Toledo, R., Fried, B. (eds) Digenetic trematodes. Chapter 6. Springer Verlag Heidelberg 2013, S. 153–199.

[15] Petney, T. N., Andrews, R. H., Saijuntha, W., Wenz-Mücke, A. and Sithithaworn, P.: The zoonotic, fish-borne liver flukes Clonorchis sinesnsis, Opisthorchis felineus and O. viverrini. International Journal for Parasitology 43 (2013), S. 1031–1046.

[16] Petney, T. N., Sithithaworn, P., Andrews, R., Kiatsopit, N., Tesana, S., Kellermeier, E. P., Grundy-Warr, C. and Ziegler, A.: Ecology of the Bithynia first intermediate hosts of Opisthorchis viverrini: a critical review. Parasitology International 61 (2012), S. 38–45.

[17] Caincross, S., Bartram, J., Cumming, O. and Brocklehurst, C.: Hygiene, sanitation, and water: what needs to be done? PLOS Medicine 7 (2010) e1000365.

[18] Esrey, S. A., Potash, J. B., Roberts, L. and Shiff, C.: Effects of improved water supply and sanitation on ascariasis, diarrhoea, dracunculiasis, hookworm infection, schistosomiasis, and trachoma. Bulletin of the World Health Organization 69 (1991), p. 609–621.

[19] Ziegelbauer, K., Speich, B., Mäusezahl, D., Bos, R., Keizer, J. and Utzinger, J.: Effect of sanitation on soil transmitted helminth infection: systematic review and meta-analysis. PLOS Medicine 9 (2012) e1001162.

[20] Babosa, F. S.: Determination and control of schistosomiasis. Memorias do Instituto Oswaldo Cruz (Rio de Janeiro) 90 (1995), p. 155–159.

[21] Asaolu, S. O. and Ofoezie, I. E.: The role of health education and sanitation in the control of helminth infections. Acta Tropica 86 (2003), p. 283–294.

[22] Minamoto, K., Mascie-Taylor, C. G. N., Karim, E., Moji, K. and Rahman, M.: Short- and long-term impact of health education in improving water supply, sanitation and knowledge about intestinal helminths in rural Bangladesh. Public Health 126 (2012), p. 437–440.

[23] Sripa, B., Tangkawattana, S., Laha, T., Kaewkes, S., Mallory, F. F., Smith, J. F. and Wilcox, B. A.: Toward integrated opisthorchiasis control in northeast Thailand: the Lawa project. Acta Tropica 141B (2015), p. 361–367.

[24] Lai, D. H., Hong, X. K., Su, B. X., Liang, C., Hide, G., Zhang, X., Yu, Z. and Lun Z. R.: Current status of Clonorchis sinensis and clonorchiasis in China. Transactions of the Royal Society for Tropical Medicine and Hygiene 110 (2016), p. 21–27.

[25] Sadun, E. H.: Studies on Opisthorchis viverrini in Thailand. American Journal of Hygiene 62 (1955), p. 81–115.

[26] Jongsuksuntigul, P. and Imsomboon, T.: Opisthorchiasis control in Thailand. Acta Tropica 88 (2003), p. 229–232.

[27] Grundy-Warr, C., Andrews, R. H., Sithithaworn, P., Petney, T. N., Sripa, B., Lathavewat, L. and Ziegler, A. D.: Raw attitudes, wetland cultures, life-cycles: socio-cultural dynamics relating to Opisthorchis viverrini in the Mekong Basin. Parasitology International 61 (2011), p. 65–70.

[28] Sithithaworn, P., Yongvanit, P., Duenngai, K.,·Kiatsopit, N. and Pairojkul, C.: Roles of liver fluke infection as risk factor for cholangiocarcinoma. Journal of Hepatobiliary and Pancreatic Science 21 (2014), p. 301–308.

[29] Wu, W., Qian, X., Huang, Y. and Hong, Q.: A review of the control of clonorchiasis sinensis and Taenia solium taeniasis/cysticercosis in China. Parasitology Research 111 (2012), p. 1879–1884.

[30] Clausen, J. H., Madsen, H., Van, P. T., Dalsgaard, A. and Murrell, K. D.: Integrated parasite management: path to sustainable control of fishborne trematodes in aquaculture. Trends in Parasitology 31 (2015), p. 8–15

[31] Sithithaworn, P., Pipitgool, V., Srisawangwong, T., Elkins, D. B. and Haswell-Elkins, M. R.: Seasonal variation of Opisthorchis viverrini infection in cyprinoid fish in north-east Thailand: implications for parasite control and food safety. Bulletin of the World Health Organization 75 (1997), p. 125–131.

[32] Waikagul, J.: Opisthorchis viverrini metacercaria in Thai freshwater fish. Southeast Asian Journal of Tropical Medicine and Public Health 29 (1998), p. 324–326.

[33] Ngoen-klan, R., Piangjai, S., Somwang, P., Moophayak, K., Sukontason, K., Sukontason, K. L., Sampson, M. and Irvine, K.: Emerging helminths infections in snails and cyprinid fish in sewage treatment wetlands waters in Cambodia. Asian Journal of Water, Environment and Pollution 7 (2010), p. 13–21.

[34] Paperna, I.: Diseases caused by parasites in the aquaculture of warm water fish. Annual Review of Fish Diseases 1 (1991), p. 155–194.

[35] Hop, N. T., De, N. V., Murrell, D. and Dalsgaard, A.: Occurrence and species distribution of fishborne zoonotic trematodes in wastewater-fed aquaculture in northern Vietnam. Tropical Medicine and International Health 12 (Suppl. 2) (2007), p. 66–72.

[36] Chi, T. T. K., Dalsgaard, A., Turbull, J. F., Tuan, P. A. and Murrell, K. D.: Prevalence of zoonotic trematodes in fish from a Vietnamese fish-farming community. Journal of Parasitology 94 (2008), p. 423–428.

[37] Sithithaworn, P., Ziegler, A. D., Grundy-Warr, C., Andrews, R. H. and Petney, T. N.: Human alterations to epidemiological life-cycle of liver flukes: the role of dams, roads, and ponds. Lancet Infectious Diseases 12 (2012), p. 588.

[38] Pitaksakulrata, O., Sithithaworn, P., Laoprom, N., Laha, T., Petney, T. N. and Andrews, R. H.: A cross-sectional study on the potential transmission of the carcinogenic liver fluke Opisthorchis viverrini and other fish-borne zoonotic trematodes by aquaculture fish. Food-borne Pathogens and Disease 10 (2013), S. 35–41.

[39] Kopolrat, K., Sithithaworn, P., Tesana, S., Andrews, R. H. and Petney, T. N.: Susceptibility, metacercarial burden and mortality of juvenile silver barb, common carp, mrigal and tilapia following exposure to Haplorchis taichui. Parasitology Research 114 (2015), p. 1433–1442.

[40] Chaisiri, K., Chaeychomsri, W., Siruntawineti, J., Bordes, F., Herbreteau, V. and Morand, S.: Human-dominated habitats and helminth parasitism in Southeast Asian murids. Parasitology Research 107 (2010), p. 931–937.

[41] Chaisiri, K., Chaeychomsri, W., Siruntawineti, J., Ribas, A., Herbreteau, V. and Morand, S.: Diversity of gastrointestinal helminths among murid rodents from northern and northeastern Thailand. Southeast Asian Journal of Tropical Medicine and Public Health 41 (2012), p. 21–28.

[42] Little, D. C., Surintaraseree, P. and Innes-Taylor, N.: Fish culture in rainfed rice fields of northeast Thailand. Aquaculture 140 (1996), p. 295–321.

[43] Schouw, N. L., Danteravanich, S., Mosbaek, H. and Tjell, J. C.: Composition of human excreta: a case study from southern Thailand. Science of the Total Environment 286 (2002), p. 155–166.

[44] Tipraqsa, P., Craswell, E. T., Noble, A. D. and Schmidt-Vogt, D.: Resource integration for multiple benefits: multifunctionality of integrated farming systems in Northeast Thailand. Agricultural Systems 94 (2007), p. 694–703

[45] Phuc, P. D., Konradsen, F., Phuong, P. T., Cam, P. D. and Dalsgaard, A.: Practice of using human excreta as fertilizer and implications for health in Nghean Province, Vietnam. Southeast Asian Journal of Tropical Medicine and Public Health 37 (2006), p. 222–229.

[46] Forrer, A., Sayason, S., Vounatsou, P., Vonghachack, Y., Bouakhasith, D., Vogt, S., Glaser, R., Utzinger, J., Akkhavong, K. and Odermatt, P.: Spatial distribution of, and risk factors for, Opisthorchis viverrini infection in southern Lao PDR. PLOS Neglected Tropical Diseases 6 (2012) e1481.

[47] Mara, D., Lane, J., Scott, B. and Trouba, D.: Sanitation and health. PLOS Medicine 7 (2010) e1000363.

[48] Macko, S. A. and Ostrom, N. E.: Pollution studies using stable isotopes. In: Lathja, K., Michener, R. H. (eds) Stable isotopes in ecology and environmental science. Blackwell Scientific Publications London 1994.

[49] Kendall, C.: Tracing nitrogen sources and cycles in catchments. In: Kendall, C., McDonnell, J. J. (eds) Isotope tracers in catchment hydrology. Elsevier Amsterdam 1998.

[50] Gooddy, D. C., Macdonald, D. M. J., Lapworth, D. J., Bennett, S. A. and Griffiths, K. J.: Nitrogen sources, transport and processing in peri-urban floodplains. Science of the Total Environment 494–495 (2014), p. 26–38.

[51] Gooddy, D. C., Lapworth, D. J., Bennett, S. A., Heaton, T. H. E., Williams, P. J. and Surridge, B. W. J.: A multi-stable isotope framework to understand eutrophication in aquatic ecosystems. Water Research 88 (2016), p. 623–633.

[52] Shalev, N., Burg, A., Gavrieli, I. and Lazar, B.: Nitrate contamination sources in aquifers underlying cultivated fields in an arid region – the Arava Valley Basin, Israel. Applied Geochemistry 63 (2015), p. 322–332.

[53] Kiatsopit, N., Sithithaworn, P., Kopolrat, K., Andrews, R. H. and Petney, T. N.: Seasonal cercarial emergence patterns of Opisthorchis viverrini infecting Bithynia siamensis goniomphalos from Vientiane Province, Lao PDR. Parasites and Vectors 7 (2014) 551.

[54] Spalluto, K.-M.: Einfluss der Parasitierung durch Opisthorchis viverrini auf den Aufbau der Gehäuse der Schneckenart Bithynia siamensis goniomphalos. Bachelor thesis. Institute of Mineralogy and Geochemistry, Karlsruhe institute of Technology 2012.

[55] Smyth, J. D.: Introduction to animal parasitology. Cambridge University Press Cambridge 1994.

[56] Chanawong, A. and Waikagul, J.: Laboratory studies on host-parasite relationship of Bithynia snails and the liver fluke, Opisthorchis viverrini. Southeast Asian Journal of Tropical Medicine and Public Health 22 (1991), p. 235–239.

[57] Bond, T., Templeton, M. R.: History and future of domestic biogas plants in the developing world. Energy for Sustainable Development 15 (2011), p. 347–354.

[58] Huong, L. Q., Madsen, H., Anh, L. X., Ngoc, P. T. and Dalsgaard, A.: Hygienic aspects of livestock manure management and biogas systems operated by small-scale pig farmers in Vietnam. Science of the Total Environment 470–471 (2014), p. 53–57.

[59] Hiestand, S. J., Nielsen, C. K. and Jimenez, F. A.: Modelling potential presence of metazoan endoparasites of bobcats (Lynx rufus) using verified records. Folia Parasitologica 61 (2014) Nr. 5, p. 401–410.

[60] Yilma, J. and Malone, J.: A geographic information system forecast model for strategic control of fasciolosis in Ethiopia. Veterinary Parasitology 78 (1998), p. 103–127.

[61] Durr, P. A., Tait, N. and Lawson, A. B.: Bayesian hierarchical modelling to enhance the epidemiological value of abattoir surveys for bovine fasciolosis. Preventive Veterinary Medicine 71 (2005), p. 157–172.

[62] Devillers, H., Lobry, J. R. and Menu, F.: An agent-based model for predicting the prevalence of Trypanosoma cruzi I and II in their host and vector populations. Journal of Theoretical Biology 255 (2008), p. 307–315.

[63] Grundmann, H. and Hellriegel, B.: Mathematical modelling: a tool for hospital infection control. Lancet Infectious Diseases 6 (2006), p. 39–45.

[64] Jewitt, S.: Geographies of shit: spatial and temporal variations in attitudes towards human waste. Progress in Human Geography 35 (2011), p. 608–626.

[65] Mariwah, S. and Drangert, J. O.: Community perceptions of human excreta as fertilizer in peri-urban agriculture in Ghana. Waste Management and Research 31 (2013), p. 648–654.

[66] Nawab, B., Nyborg, I. L. P., Esser, K. B. and Jenssen, P. D.: Cultural preferences in designing ecological sanitation systems in North West Frontier Province, Pakistan. Journal of Environmental Psychology 26 (2006), p. 236–246.

[67] Tajima, K.: The marketing of urban human waste in the early modern Edo/Tokyo metropolitan area. Urban Environment 1 (2007), p. 13–30.

[68] Adams, J., Bartram, J., Chartier, Y. and Sims, J. (eds): Water, sanitation and hygiene standards for schools in low-cost settings. World Health Organization Geneva 2009.

[69] Andrews, R. H., Sithithaworn, P. and Petney, T. N.: The liver fluke Opisthorchis viverrini is a neglected parameter in world health. Trends in Parasitology 24 (2008), p. 497–501.

[70] Pakharukova, M. Y. and Mordvinov, V. A.: The liver fluke Opisthorchis felineus: biology, epidemiology, and carcinogenic potential. Transactions of the Royal Society or Tropical Medicine and Hygiene 110 (2016), p. 28–36.

[71] Qian, M. B., Chen, Y. D., Liang, S., Yang, G. J. and Zhou, X. N.: The global epidemiology of clonorchiasis and its relation with cholangiocarcinoma. Infectious Diseases of Poverty 1 (2012) 4.